
S E S C C C  9 5

The Ninth Annual

Southeastern Small College Computing Conference

Saturday, November 4, 1995
8:00 A.M. – 12:00 P.M.

Swang Business Building
Lipscomb University

N a s h v i l l e



P a g e  2  o f  8

P R O B L E M  O N E

Crazy Commie Calculator

T h e P r o b l e m

Russian Peasant Multiplication is a technique pioneered by Boris and Igor Stravinsky, two vodka-
swilling, Lenin-kissing mathematicians from the former Soviet Union. Being from the old school, Boris
and Igor refuse to use modern multiplication methods and insist on using their tried and true approach to
multiplying two numbers.

Russian Peasant Multiplication produces the product of two numbers using only multiplication
and division by 2. Here’s how Boris described it to me last night in the Russian karoke bar near Opryland:

Ve vill buildski a tableski of tree columnski. Ze finalski entry
in ze thirdski columnski is ze desired productski. Initializeski
ze firstski columnski to oneski operandski ov ze
multiplicationski, ze secondski columnski to ze otherski
operandski ov ze multiplicationski. Ze thirdski columnski is
usedski toski ...

Well, at this point I stopped listening (it was Gorby night, and a look-alike was up singing
Volare). When I got back to my hotel, I worked and worked until I figured out what Boris was saying to
me. Here’s an example of Russian Peasant Multiplication performing 25 × 20 = 500:

25 20 20
12 40 20
6 80 20
3 160 180
1 320 500

S a m p l e I n p u t

Your program should take its input from the text file prob1.in. This file contains an undetermined
number of integer pairs. Your program should produce the product of each integer pair using Russian
Peasant Multiplication. Here is a sample of what this file might look like:

25 20
20 25

S a m p l e O u t p u t

Your program should direct its output to the screen. Appropriate output for the sample input listed above
would be:

25 x 20 = 20 + 160 + 320 = 500
20 x 25 = 100 + 400 = 500

Ze answerski



P a g e  3  o f  8

P R O B L E M  T W O

Super Freq

T h e P r o b l e m

A character is known to its homeboys as a super freq if it occurs with frequency greater than 15% in a
given passage of text. Write a program that reads an ASCII text file and identifies all the English alphabet
(A-Z, a-z) super freqs in that text file. Your program should be case insensitive.

S a m p l e I n p u t

Your program should take its input from the text file prob2.in. Three examples (A, B and C) of the
possible content of this file are shown below:

(A) Sally sells sea shells by the sea shore.

(B) How now brown cow.

(C) Hey Sam!

S a m p l e O u t p u t

Your program should direct its output to the screen. Appropriate output for the sample inputs (A, B and
C) is shown below:

(A) S is a super freq.

(B) O is a super freq.
W is a super freq.

(C) There are no super freqs.



P a g e  4  o f  8

P R O B L E M  T H R E E

Bisecting Frogs

T h e P r o b l e m

Professor Harvey Peevey is a research biologist currently on assignment in a dark jungle in South
America. Harvey’s research involves studying the daily living habits of one of the most reclusive and
fascinating animals on earth — the red-eyed nocturnal tree frog (Visineus Nightus Frogus).

Long nights of observation have given Harvey insight on many of the frogs’ behavior patterns,
one of which is their preferred perching height in trees. It seems that a frog’s height in a tree on a given
night can be expressed as a function of the amount of rain that fell that day in the jungle. The function
that Harvey came up with is

f(x) = x3 + 4x2 - 10
where x is the number of inches of rain for a given day. Evaluating the function f at a given x yields the
height in meters at which the frogs will perch that night.

As you can well imagine, frogs are best observed when perched about midway up the tree — not
too high, not too low. Harvey wishes to find out which days are the best for viewing frogs; that is, how
much rain will cause the frogs to perch halfway up their tree.

Write a program that finds this optimal amount of rainfall for Harvey and his frogs.

S a m p l e I n p u t

None. However, assume that it rains between 1 and 2 inches each day in the jungle.

S a m p l e O u t p u t

Your program should direct its output to the screen. Appropriate output should take the following
form:

 The optimal amount of rainfall for frog viewing is x.xxx inches.
(Where x.xxx represents a real number.)



P a g e  5  o f  8

P R O B L E M  F O U R

Packet Sniffer

T h e P r o b l e m

Sniffed any good packets lately, dude? Hopefully you haven’t done this illegally, but rest assured that there
are some who have. If you surf the Internet, you have probably visited companies’ net sites where they sell
their products online: you give them your credit card number and they ship you the goods. That’s a
convenient way to shop if you can ensure that your credit card number isn’t being “sniffed” up by wily
hackers and used illicitly.

The Internet is an example of a packet-switched network. This means that information is sent in
discrete groups of bits called packets from computer to computer. For example, when I send email to
someone in the Philippines, my message (at the binary level) is broken up into packets, and routed packet
by packet (not all at once) from computer to computer, ultimately to the recipient’s computer.

“Packet sniffing” refers to writing a program that grabs the individual packets that come your
computer’s way and reads their contents. Now the term “packet sniffing” has obvious unethical
connotations: usually it refers to writing a program that reads packets addressed to computers other than
your own. But the principle is exactly the same when you only intercept those packets that are intended for
you.

Let’s suppose that a network packet consists of three parts: a special start-of-packet bit pattern,
the packet content, and a special end-of-packet bit pattern. Suppose that the start- and end-of-packet
pattern are both 1000001 and that the packet content is no more than three consecutive sequences of 7 bits
(1’s and 0’s). So, to write a program to “sniff” packets you need only to write a program that scans its
input and “decodes” everything between pairs of 1000001.

For this problem assume that the content of each packet is binary representation of no more than
three ASCII characters, each encoded in 7 “bits” (0’s and 1’s). Your task is to write a program that prints
out the message (in English) that is being transmitted by a sequence of packets.

S a m p l e I n p u t

Take your input from the text file prob4.in. Here’s a sample of its content:

10000011100010110111111011111000001100000101000011000001

You are guaranteed two things: (1) the encoding is correct, and (2) only lower case letters and
punctuation are encoded in the packet.

S a m p l e O u t p u t

Your program should direct its output to the screen. The correct output for the sample input above is:

boo!



P a g e  6  o f  8

P R O B L E M  F I V E

Senator Bob

T h e P r o b l e m

As Senator Bob’s chief programmer, you have just been faxed a page from the Senator’s diary that
describes an encryption scheme that Senator Bob wants implemented in software. It seems that Senator
Bob needs a method of sending secret messages to a few “professional secretaries” detailing when and
where to meet for their next dictation session. Your program should allow both encoding and decoding of
the Senator’s messages.

Senator Bob’s diary page specifies the following method of encoding messages: Take the ASCII
value of each character in the message, starting with the last character of the message and ending with the
first character of the message, and write this value in reverse order to the encoded message. For example,
the character ‘A’ should be encoded as 56 since it has the ASCII value 65. The character ‘z’ should be
encoded as 221 since it has the ASCII value 122. There should be no spaces separating the numbers in the
encoded message. Decoding is just the inverse operation.

Here is a table of the valid ASCII characters appearing in messages:

Char ASCII Char ASCII Char ASCII

A 65 a 97 space 32
B 66 b 98 ! 33
... ... ... ... , 44
... ... ... ... . 46
... ... ... ... : 58
Z 90 z 122 ; 59

S a m p l e I n p u t

Your program should take its input from the file prob5.in. This file consists of an undetermined
number of line pairs. The first line in a pair contains either the string “encode” or the string “decode”
indicating which operation is to be performed on the associated message. The second line of the pair
contains the associated message. You may assume that each message is at most 80 characters long and
can contain any upper or lower case letter of the English alphabet plus the space, comma, period, colon,
semicolon, question mark, and exclamation mark.

Sample content of the file might be:

encode
abc
encode
Have a Nice Day !
decode
998979
decode



P a g e  7  o f  8

332312179862310199501872379231018117927

S a m p l e O u t p u t

Your program should direct its output to the screen. This output should contain the result of the indicated
operation on each message. Appropriate output for the sample input above would be:

Message 1 (encoded): 998979
Message 2 (encoded): 332312179862310199501872379231018117927
Message 3 (decoded): abc
Message 4 (decoded): Have a Nice Day !



P a g e  8  o f  8

P R O B L E M  S I X

Palintrees

T h e P r o b l e m

A palindrome is a string containing the same sequence of characters forward as backward. For example,
the strings h, madam, xyzyx, and ababa are all palindromes. Let’s say that the empty string is not a
palindrome.

Define a palintree as a binary tree of characters in which at least
one root-to-leaf path represents a palindrome. For example, in the tree in
Figure 1 there are exactly for root-to-leaf paths but none of them represents
a palindrome. Thus this tree is not a palintree. However, in the tree in
Figure 2 there is a root-to-leaf path that represents the palindrome ababa; so,
this tree is a palintree.

Binary trees are represented in the input with the following form:

tree Õ empty-tree | (alpha-char tree tree)
empty-tree Õ ()

Nodes of a tree are specified as single lowercase characters from the English
alphabet. There are no blank spaces in the input. So, the palintree in Figure
2 would be represented as

(a(b(p(m()())(n()()))())(b(c()())(a(b(a()())())(a()())))
)

S a m p l e I n p u t

Your program should take its input from the text file prob6.in. This file contains an undetermined
number of tree specifications, one per line. For example, if the file contained specifications for the trees in
Figure1 and Figure 2, its contents would be:

(x(q(y(w()())(k()()))())(a(z()())(d(f()())())))
(a(b(p(m()())(n()()))())(b(c()())(a(b(a()())())(a()()))))

S a m p l e O u t p u t

The output of your program should be directed to the screen. Output from the sample input above should
appear as follows:

Tree 1 is not a palintree.
Tree 2 is a palintree. Its palindrome is ababa.

x

q a

y z d

w k f

Figure 1

a

b b

p c a

m n ab

a

Figure 2


