

2016 Consortium for Computing Sciences in Colleges
Programming Contest

Saturday, November 5th
 University of North Carolina at Asheville

Asheville, NC

There are eight (8) problems in this packet. Each team member should have a copy of the

problems. These problems are NOT necessarily sorted by difficulty. You may solve them in

any order.

Remember input/output for the contest will be from stdin to stdout. Stderr will be ignored.

Do not refer to or use external files in your source code. Extra white space at the end of lines is

ignored, but extra white space at the beginning or within text on a line is not ignored. An extra

blank line of output is ignored, but blank lines at the beginning or between lines of text are not

ignored. Have a lot of fun and good luck!

Problem 1. Secret Club Names

Problem 2. Check Those Bills!

Problem 3. Pokémon Go

Problem 4. Flatland

Problem 5. Passcodes

Problem 6. The Bookmaker

 Problem 7. Aerial Photography

 Problem 8. Proper Subset Strings

 1

Problem 1

Secret Club Name

BitCoin Asheville recently started using secret club names for their different chapters who meet

throughout Buncombe County. Instead of relying on things like physical features for these

names, they have decided to use a permutation of a member's first name in all uppercase. To

create a club name, they will first reverse the order of all of the vowels in the member's first

name, and then reverse the order of the consonants in the name. For example, for the first name

WALDO, the vowels are A and O. Reversing their order gives WOLDA. The consonants W, L,

and D are then reversed, giving the club name of DOLWA. You may assume a first name with

non-letters will never be used.

BitCoin Asheville has asked for your help in creating club names. They consider the letters A,

E, I, O, and U to be the only vowels. Write a program to take a list of member first names and

output the corresponding club name for each.

Input

The input will consist of one or more names, one per line. Each name will consist of 1 to 80

uppercase letters. The last line of input will be a line with the word LAST. This line should not

be processed.

Output

For each line of input generate a line with the original name, followed by a colon (‘:’) and the

club name.

Sample Input
WALDO

MARYANNE

LINUS

MARGARET

GEORGE

SARAH

LAST

Output Corresponding to Sample Input
WALDO:DOLWA

MARYANNE:NENYARMA

LINUS:SUNIL

MARGARET:TERGARAM

GEORGE:GEORGE

SARAH:HARAS

 2

Output Corresponding to Sample Input
98765432:ladder

66666666:solid

45555555:seven in a row

99909999:seven of a kind

99999999:solid

62936293:repeater

07344370:radar

83398540:no pattern

00000100:low

01234567:ladder

Sample Input
10

98765432

66666666

45555555

99909999

99999999

62936293

07344370

83398540

00000100

01234567

Problem 2

Check Those Bills!

Your money may be worth more money than you think. Even a dollar bill could be worth

enough to pay some of those monthly bills. The key is the eight-digit serial number, and whether

it seems ‘fancy’ or special to collectors. When the redesigned $100 bill came out in October

2016, the one with the serial number 00000001 sold for $15,000 on eBay. But, history aside, it's

mostly about number patterns. Even $1, $2 and $5 bills can be worth a lot more than face value.

A check of eBay shows examples, like a $1 bill fetching $86 for having the serial number

67676767, or another selling for $666 for having the number 98765432.

There are eight patterns of those eight digits that could make you rich quickly. They are, in order

of value, solid (every digit the same), such as 11111111; ladder (counting up or down), such as

12345678; low, 00000100 or lower; high, 99999900 or higher; radar (same backwards and

forwards), such as 13466431; repeater (second half same as first half), such as 12791279;

seven in a row, such as 33333335; seven of a kind, such as 35333333. Your job is to write a

program to detect the presence of any of these special patterns in the serial number of a bill.

Check each bill for the pattern of highest value. For example, 00000000 is worth more as a solid

than it is as a low.

Input

The first line of input contains a single integer n, (1 ≤ n ≤ 1000), which is the number of test

cases that follow. For each serial number being tested, the input will be a single line containing

one valid 32-bit integer.

Output

For each serial number input, output it, followed by a colon (‘:’) and the pattern of highest value

detected. If no pattern is detected, output no pattern. Format output as shown below.

 3

Problem 3

Pokémon Go

Ash has been playing a lot of Pokémon Go lately. I mean, A LOT. He has become addicted to

the gaming app that has taken the world by storm in 2016. While gaming, you've noticed that

Ash is actually not very efficient, and wastes a lot of Poké Balls attempting to catch a Pokémon

that he has already caught. You even saw him throw ten Poké Balls at a Zubat when there was a

Mew 100 feet away! But I digress...

You have decided that you do not want to make that same mistake. After some googling you've

found that each Poké Ball has a probability p of capturing a Pokémon that it is thrown at (given

your throw is perfect). You are now wondering, how many Poké Balls on average will you need

to catch k Pokémon?

Input

The first line of input contains a single integer n, (1 ≤ n ≤ 1000), which is the number of test

cases that follow. The next n lines will each have an integer k (1 ≤ k ≤ 5000, the number of

pokemon to catch, and p probability (0.1 ≤ p < 1.0) that a Poké Ball will be successful at

catching a Pokémon.

Output

For your output, you should print the average number of Poké Balls it will take to capture the

specified number of Pokémon. If the average number of Pokémon is not an integer, you should

take the next integer above that value.

Sample Input
2

1 0.5

3 0.25

Output Corresponding to Sample Input
2

12

 4

Problem 4

Flatland

Sir Cull is a highly regarded figure in Flatland politics, but unfortunately faces a certain amount

of social anxiety. You see, Sir Cull happens to be a circle and due to his rotund physique is not

very nimble. Sometimes in his daily strolls he accidentally bumps into other citizens of Flatland.

In particular, he has a nasty habit of inadvertently bumping squarely into his neighbor Mr. E.

Lipse. Of course, Mr. Lipse, also a circle, is good-mannered and attempts to see the situation

from Sir Cull's side. So, Mr. Lipse suggests using some math to predict their positions so that

they no longer collide, which will surely round out Sir Cull's mood.

Here are the basics of the math: Sir Cull is a circle with radius R1 that starts at a position

(x_c1, y_c1) and moves continuously by (vx_c1, vy_c1) every second. Similarly, Mr. Lipse

is a circle with radius R2 that starts at position (x_c2, y_c2) and moves continuously by

(vx_c2, vy_c2) every second. Given this information, Mr. Lipse claims that he can determine

if they will ever collide. Can you do the same?

Input

The first line of input consists of a positive number n < 10 dictating the number of cases to

follow. The next n lines will each have ten floating point numbers, dictating R1, x_c1, y_c1,

vx_c1, vy_c1, R2, x_c2, y_c2, vx_c2, and vy_c2 respectively. You can assume that Mr.

Lipse and Sir Cull start far enough apart that they do not overlap in any way at the start, and that

any intersection will occur after the start time. You may also assume all floating point values are

between -10 and 10 exclusively.

Output

For each line of input you should simply print the time at which Sir Cull and Mr. E. Lipse would

collide to three decimal places. If they will not collide, simply print no collision.

Sample Input
2

1.000 0.000 0.000 1.000 0.000 1.000 3.000 0.000 -1.000 0.000

1.000 0.000 0.000 1.000 0.000 1.000 3.000 0.000 2.000 0.000

Output Corresponding to Sample Input
0.500

no collision

 5

Problem 5

Passcodes

Chip is fairly forgetful and has really been struggling to make a new passcode for his iPhone that

is easy for him to remember. April suggests making passcodes that have particularly interesting

properties. For instance, one of her suggestions is to make passwords such that every digit is

relatively prime to the digit before it. This obviously excludes passcodes that have 0 or 1 in it,

but still allow for quite a few passcodes.

As a quick reminder, two numbers are considered relatively prime if they share no common

factors other than 1. For instance, 4 and 7 are relatively prime because the largest number that

divides both is 1. 4 and 6, however, are not relatively prime because they are both divisible by 2.

So a password that would conform to April's structure would be "2374". However, "2437"

would not because 4 and 2 are not relatively prime.

Chip is now curious about the security of such a passcode. Since the relatively prime limits

passcodes to only the digits 2 through 9, he's worried that there aren't very many passcodes

available. Chip has asked you to calculate the number of passcodes available for a given

passcode, provided that it has k digits.

Input

Input will start with a single integer n, (1 ≤ n ≤ 25), which will indicate the number of cases to

follow. Following that are n lines, each with a single integer k, (1 ≤ k ≤ 25), which is the

number of characters to allow in the passcode. You can assume there will be at most 25 cases,

and the largest value for k will be 25.

Output

For each k, you should simply print the number of passcodes that adhere to April's rules.

Sample Input
3

1

2

3

Output Corresponding to Sample Input
8

38

200

 6

Problem 6

The Bookmaker

Declan’s parents are horse trainers. So, naturally, he grew up around horses, and he always had

a casual interest in them. However, Declan never liked getting too close to the creatures. He

was not interested in riding horses, or training them, or mucking out after them. Instead, he was

more interested in financial matters and betting. And he got his chance to test the waters when

he got a part-time job with a bookmaking firm at a large racetrack.

And today is Declan’s first day on the job. His boss has given him an assignment to test his skill

with numbers. Declan needs to calculate the potential payout amount for each bet. He also

needs to be able to estimate the firm’s profit margin. These are necessary skills in order for

Declan to succeed on the job. Let’s write a computer program to help him.

The input to the program will be a list of bets. Each bet will have a dollar amount being wagered

by the bettor, followed by the odds of the bettor winning. For each bet, the program needs to

determine the payout. The payout is the amount of money the bettor will potentially win, based

on the wagered amount and the odds. Finally, after processing all of the bets, the program will

determine the bookmaker’s expected profit, which is always nine percent (9%) of the total

amount of money wagered by all bettors. There are three kinds of odds:

 Odds against (e.g. 10 to 1 against), which means the horse is not likely to win.

 Odds on (e.g. 4 to 1 on), which means that the horse is more than likely to win.

 Even money, which means there is a 50/50 chance of the horse winning.

Odds against are so common that the word “against” is omitted.

Input
The first line of input will indicate the total number of bets. The format of the first line is
<number> bets

where the <number> is a positive integer between 2 and 100, inclusive.

Each subsequent line of input will show one bet. The format of these input lines will follow one

of the following three patterns:
$<number>, <number> to <number>

$<number>, <number> to <number> on

$<number>, even money

Each <number> will be a positive integer between 1 and 1000, inclusive. The first number on

the line is the bet amount. The odds of winning the bet appear after the comma. The word “on”

may optionally appear at the end of the line, and this indicates that the horse is more than likely

to win. Both the bet amount and odds are used to determine how much money the bettor will

win if the horse wins the race.

 7

Output

Here is how to compute the payout amount. For each dollar wagered by the bettor, the payout

will be:

 $(1 + a/b) if the odds are a to b against

 $(1 + b/a) if the odds are a to b on

 $2 if the odds are even money

Your program should print the payout for each bet in the same order that the bets appear in the

input. That is, there should be no attempt to sort the output. The payout of each bet should

appear this way:
Bet <number> payout is $ <money>

The <number> is the sequential number of the bet, starting with 1. The <money> must be

rounded to two decimal places. Also note that there needs to be a space on either side of the

dollar sign. After processing all of the bets, the program should compute the bookmaker’s

expected profit, which is 9% of the sum of all of the bet amounts. This result should be written

in a sentence as follows:
Expected bookmaker profit is $ <money>

Here, too, there should be a single space on either side of the dollar sign, and the amount of

<money> must be rounded to two decimal places. Your output should look like the example

output below.

Note that in this program, there is no information about which horses won. In other words, we

are not concerned about which bets are successful. The program will calculate payout amounts

assuming that all bets win. Of course, in real life, some bets will lose, and the bettor would not

receive a payout in those situations, but that is beyond the scope of this program.

Sample Input
4 bets

$50, 15 to 8

$100, even money

$20, 7 to 4 on

$5, 100 to 1

Output Corresponding to Sample Input
Bet 1 payout is $ 143.75

Bet 2 payout is $ 200.00

Bet 3 payout is $ 31.43

Bet 4 payout is $ 505.00

Expected bookmaker profit is $ 15.75

 8

Problem 7

Aerial Photography

A new state called Cumberland has been carved out of the frontier. It measures 600 miles from

north to south, and 600 miles from west to east. Ariel Hawk, the first governor of the state,

wants an aerial survey of Cumberland. She would like to have aerial photographs taken of every

square mile of the state. However, there is not yet enough money in the state budget for such an

appropriation. Therefore, the governor is accepting proposals for which part of the state should

be photographed first, and she is soliciting proposals from the general public.

To make this a manageable task, Governor Hawk will accept proposals that identify rectangular

regions of the state to be photographed. For the purpose of this land survey, the state of

Cumberland is subdivided into 10,000 townships. Each township is a square measuring 6 miles

on a side. The townships are numbered in the form bb cc, where bb and cc are two-digit

numbers going from 00 to 99. The individual numbers bb and cc function in a manner

reminiscent of latitude and longitude, respectively. For example,

 The northwestern most township is numbered 00 00

 The southeastern most township is numbered 99 99

 The northeastern most township is numbered 00 99

 The southwestern most township is numbered 99 00

Each township is in turn subdivided into square sections measuring 1 mile on a side. There are

thus 36 sections per township. The sections of a township are numbered from 01 to 36 according

to the following scheme, where the 01 section is in the northeast corner and the 36 section is in

the southeast corner:

06 05 04 03 02 01

07 08 09 10 11 12

18 17 16 15 14 13

19 20 21 22 23 24

30 29 28 27 26 25

31 32 33 34 35 36

Consequently, each 1-square-mile section of the state can be uniquely identified by a 6-digit

code of the form aa bb cc, where bb cc is the township number and aa is the section number

within the township. For example, the northwestern most section in all of Cumberland is

numbered 06 00 00, and the southwestern most section is numbered 31 99 00.

A rectangular region of Cumberland is simple to define: we specify the northwestern most and

southeastern most section numbers that are to be included in the aerial survey. Therefore, a

rectangular region is specified by 12 digits of the form aa bb cc dd ee ff, where aa bb cc

 9

is the northwestern most section in the rectangle, and dd ee ff is the southeastern most section

in the rectangle.

Your job is to assist Governor Hawk in evaluating the requests of rectangular regions. You will

be presented with a list of rectangular regions, and you need to write a program that calculates

the area, in square miles, of each region.

Input

The input to the program will have this form. The first line of the input will say:
<n> regions

where <n> is a positive integer less than 100. The next n lines of the input will each contain the

12-digit coordinates of a particular rectangular region of the state. The 12 digits will be

presented in pairs, with a single space between each pair. There may be trailing spaces after the

final pair of digits. In other words, each rectangular region will be specified as:

aa bb cc dd ee ff where the numbers bb, cc, ee, and ff are between 00 and 99 inclusive;

and the numbers aa and dd are between 01 and 36 inclusive. The ordered triple aa bb cc

refers to the northwestern most section of a rectangular region, and the ordered triple dd ee ff

is the southeastern most section. Any number less than 10 will have a padded zero, so that all six

numbers on an input line will have two digits. You may assume that the input is valid. In

particular, you may assume that, within a given rectangular region, the second section given is

not located either north of or west of the first section given. However, it is possible for a

rectangular region to be only 1 mile wide in either or both dimensions. For example, 07 07 07

07 07 07, is a square mile that does exist.

Output

Your output needs to be in this format: There should be n lines of output, one line per

rectangular region. Give the area of each region in the form:
Region <i> has <m> square miles.

where i is a sequential integer from 1 to n, inclusive, and m is also an integer. If m = 1, then

the word miles should be spelled in the singular, mile. The lines of the output should give the

area of the rectangular regions in order from 1 to n. In other words, do not attempt to sort the

output in any way.

Sample Input
5 regions
19 47 41 36 47 41

35 47 41 07 48 42

10 50 42 10 50 42

25 49 42 01 50 42

06 00 00 36 99 99

Output Corresponding to Sample Input
Region 1 has 18 square miles.

Region 2 has 9 square miles.

Region 3 has 1 square mile.

Region 4 has 3 square miles.

Region 5 has 360000 square miles.

 10

Problem 8

Proper Subset Strings

A given string1 is defined to be a proper subset of another string2 if all three of the

following conditions are true :

1) string1 is a substring of string2.

2) string1 is either at the beginning of string2 or it is immediately preceded by a space.

3) string1 is either at the end of string2 or it is immediately followed by a space.

For example, the string "disk" is a proper subset of the following strings.

 "disk"

 "error on disk"

 "error on /dev/disk disk"

 "error on disk DSK1"

The string “disk” is not a proper subset of the following strings.

 "DISK"

 "error on disk3"

 "error on /dev/disk"

 "diskette"

Your job is to write a program which checks to see if string1 is a proper subset of string2.

Input
The first line of input contains a single integer n, (1 ≤ n ≤ 1000), the number of test cases that

follow. Each test case consists of two lines of input containing a string of length n, (1 ≤ n ≤

80). The first line of the test case is string1. The second line contains string2. You may

assume neither string1 nor string2 has a blank space at its beginning or ending.

Output

For each test case, output "string1" is a or is not a proper subset of "string2".

String1 and string2 should be surrounded by quotation marks exactly as formatted below.

Sample Input
3

disk

error on disk

disk

error on /dev/disk disk

disk

error on /dev/disk

Output Corresponding to Sample Input
"disk" is a proper subset of "error on disk"

"disk" is a proper subset of "error on /dev/disk disk"

"disk" is not a proper subset of "error on /dev/disk"

