

Consortium for Computing Sciences in Colleges
Southeastern Virtual Programming Competition
Saturday, January 23rd, 2021, 10 AM – 1 PM EST

 Hosted by University of North Carolina at Asheville

There are ten (10) problems in this packet. Each team member should have a copy of the

problems. These problems are NOT necessarily sorted by difficulty. You may solve them in

any order. Remember input/output for the contest will be from stdin to stdout. Stderr will

be ignored. Do not refer to or use external files in your source code. Extra white space at the

end of lines is ignored, but extra white space at the beginning or within text on a line is not

ignored. Reminders for our virtual competition:

 Teams may be comprised of 1 – 3 students.

 Internet access is allowed.

 Video, audio, or text conferencing between team members is allowed, as is any file

transfer.

 Any team found to be communicating with someone other than their teammates for

assistance will be disqualified.

 Four programming languages are allowed: C#, C++, Java 11, Python 3.8.

 An awards ceremony will be held at 1:30 PM EST on the general conference Zoom link.

 Have a lot of fun and good luck!

Problem 1. Military Time

Problem 2. Balancing Delimiters

Problem 3. Millennial Millinery

Problem 4. The Typing Robot

Problem 5. Evil Villains Identify Links

Problem 6. Efficient Tasks

Problem 7. Word Stats

Problem 8. Snow to Water Ratios

Problem 9. Where there’s a Will, there’s Rabbits

Problem 10. Morse Code Decoder

 1

Problem 1
Military Time

Military time is a method of measuring the time based on the full twenty-fours of the day rather

than two groups of twelve hours. For example, 0530 is 5:30 AM and 1730 is 5:30 PM. You are

writing a program that inputs two military times for a particular soldier. The first time input

represents when the soldier first logs in for work, and the second time input is when he or she

logs out. Your program should calculate the total hours and minutes they worked. Many

members of the military work during the third shift so they may log in one evening, and log out

the following day.

Input

The first line of input will be a positive integer n representing the number of test cases. This will

be followed by n lines of input consisting of two integers. The first integer at the start of the line

is the time when someone logs in and the second integer is the time is when he or she logs out.

The two integers will each be four digits and separated by a single space. They will always be

valid times in the range from 0000 up to 2359.

Output Corresponding to Sample Input

The output should be formatted exactly as shown below where each line indicates the hours and

minutes worked between the two times. Use the singular word hour and/or minute when you

only have one of either.

Sample Input
5

0900 1730

1730 0900

0030 0031

0031 0030

1231 1430

Sample Output
8 hours 30 minutes

15 hours 30 minutes

0 hours 1 minute

23 hours 59 minutes

1 hour 59 minutes

 2

Problem 2
Balancing Delimiters

Many encoded strings contain delimiters. A delimiter is a non-empty string that acts as a

boundary between different parts of a larger string. The delimiters involved in this problem

occur in pairs that must be balanced with each pair having an open delimiter and a close

delimiter. The open and close delimiters will always be different.

Input

The first line of input will contain a single integer n, which represents the number of test cases.

You may assume that 1 ≤ n ≤ 100. This will be followed by n test cases. Each test case consists

of two lines. The first line contains the open and close delimiters. Each delimiter is a sequence

of nonspace characters of length less than ten consisting of letters, digits, and/or symbols. The

second line will be a string of one or more tokens to be checked for balanced delimiters. Assume

all delimiters and other tokens are preceded by at least one space unless they occur at the start of

a line.

Output

For each test case, you should print the string checked followed by whether or not it is balanced

in the format below.

Sample Input
6

()

(x + (y)

{ }

{ { 3 + 4 } }

 Make this text bold

 Make this text bold </UB>

[]

[[[UNCA]]]

fish fish2

red fish blue fish2 green fish yellow fish2

Output Corresponding to Sample Input
(x + (y) is not balanced

{ { 3 + 4 } } is balanced

 Make this text bold is balanced

 Make this text bold </UB> is not balanced

[[[UNCA]]] is balanced

red fish blue fish2 green fish yellow fish2 is balanced

 3

Problem 3

Millennial Millinery

Melissa is opening a new millinery business in downtown Asheville. It is a hat store called

Millennial Millinery. For now, Melissa has decided to sell just one type of hat, but it will vary

by size and material. She would like your help in determining the prices of hats. The type of

material will determine the price of a hat and the total area of material used to make the hat.

In this problem, we will assume that the human head and the hat will be circular in shape rather

than elongated. For a given hat, you will need to determine the total area of material used. Let r

be the radius of the wearer’s head in inches. Each hat consists of three parts:

 The top of the hat, which is a circle of radius r.

 The middle of the hat, which is a cylinder without its two bases. This cylinder has a

circumference equal to that of the top of the hat, and a height of 4 inches.

 The brim of the hat, which is 3 inches wide. Thus, the brim occupies the annular region

between two concentric circles having radii of r and r + 3 inches.

Each hat is made of one kind of material. Melissa makes hats of three possible materials, and

each type has a different price per square inch:

 Velvet, 25 cents

 Straw, 35 cents

 Wool, 45 cents

The hats come in various sizes. Hat sizes range from 6 to 8, in increments of one-eighth. Thus,

the second largest hat size is 7
7

8
 and the second smallest is 6

1

8
. The relationship between the hat

size and the size of the wearer’s head is as follows. If ℎ is the hat size, then the circumference of

the head and of the hat is
25

8
ℎ. For example, a size 7 hat has a circumference of 21

7

8
 inches.

Input

The first line of input will contain a single integer n, indicating the number of hats to price. Each

of the remaining n lines of input will contain information about one hat. The format of such a

line is as follows:

Model <number> <material> <size>

Where <number> is a two-digit positive integer, <material> is “velvet”, “straw”, or “wool”;

and <size> is either a whole number 6, 7, or 8, or a mixed numeral between 6 and 8 rounded to

the nearest one-eighth in lowest terms. A mixed numeral will have one space between the whole

number and fraction.

 4

Output

Your program will print one line for each hat. The output format is as follows:
Model <number> $ <price>

Where <price> is an amount of dollars expressed to exactly two decimal places. Be sure to

print exactly one space on either side of the dollar sign.

Sample Input
3

Model 70 wool 6

Model 97 velvet 7 1/2

Model 86 straw 6 5/8

Output Corresponding to Sample Input
Model 70 $ 84.38

Model 97 $ 59.01

Model 86 $ 72.56

 5

Problem 4
The Typing Robot

Maurice has built a robot, and now he wants to teach it how to type on a keyboard. The first task

for the robot is to be able to type numbers with one hand. As a preliminary experiment, Maurice

wants the robot to type numbers that fit a specific pattern. The digits of the number are arranged

so that it is only necessary for the robot’s hand to move in a single direction, from left to right,

and never right to left, while typing the number. The left-to-right motion also allows the robot’s

hand to become momentary stationary while typing several consecutive instances of the same

digit.

From left to right, the digits on the robot’s keyboard are just like yours: 1,2,3,4,5,6,7,8,9,0. In

Maurice’s experiment, if the robot depresses the digit 5, the next digit of the number may be 5, 6,

7, 8, 9, or 0, but it cannot be 1, 2, 3, or 4.

Maurice needs help in determining how many numbers fit this monotonic left-to-right pattern.

Given the number of digits, the starting digit, and the final digit, Maurice wants to know how

many positive integers exist such that the robot’s hand should never move left.

For example, here is a list of all five-digit numbers beginning with one and ending with three that

fit this pattern: 11113, 11123, 11133, 11223, 11233, 11333, 12223, 12233, 12333, 13333. Note

that while typing a number it is possible to skip a digit. 13333 skips the digit 2.

An instance of this problem consists of three integers:

 n, the number of digits

 A, the starting digit

 B, the final digit

You may assume that either A = B, or B is located to the right of A on the keyboard. You may

also assume that 2 ≤ n ≤ 40. You need to determine how many n-digit positive integers whose

leftmost digit is A and rightmost digit is B can by typed by the robot without having to move its

hand ever to the left.

Input

The first line of the input will contain a single integer, indicating the number of test cases. Each

test case appears on its own line. Each test case will indicate the values of n, A, and B, in that

order.

 6

Output

The output should display the solution to each test case, expressed as a single integer, one per

line.

Sample Input
8

7 7 7

3 4 5

10 8 0

5 1 3

40 1 0

4 2 9

2 4 6

37 4 0

Output Corresponding to Sample Input
1

2

45

10

1362649145

36

1

4496388

 7

Problem 5
Evil Villains Identify Links

The Union of Underground Supervillains includes many nefarious evildoers, including Devil

Digger, Dirty Trickster, Terror Tunneller, and the Underwhelmer. These villains have decided to

band together for their common defense from over-eager superheroes. Each villain has an

underground lair. In total, there are 1 < L < 100 lairs. To more conveniently travel between lairs,

the villains will dig tunnels connecting their lairs. However, the process of digging tunnels is

extremely difficult and time-consuming, so they would like to minimize the amount of digging

required. Write a program to determine minimum tunneling distance needed to connect the

underground lairs so that it is possible to travel from any lair to any other (possibly passing

through other lairs in the process). To simplify, you may assume all tunnels are in a straight-line

directly connecting one lair with another.

Input

The first line of input will contain a single integer N, which will indicate the number of test

cases. You may assume that 1 ≤ N ≤ 100. Each of the N test cases will start with a line

containing a positive integer L representing the number of lairs. The following L lines each

consists of a series of L numbers representing the distances to the other lairs.

Output

For each test case, the program should print the case number in the format below followed by a

single number representing the minimum total distance of tunnels so that travel between the lairs

is possible. In the first test case below between the four lairs, the minimum distance of tunnels to

be dug, 15, occurs by connecting the first and second lairs (distance 3), the second and third lairs

(distance 7), and the third and fourth lairs (distance 5).

Sample Input
2

4

0 3 10 8

3 0 7 12

10 7 0 5

8 12 5 0

2

0 2

2 0

Output Corresponding to Sample Input
Case #1: 15

Case #2: 2

 8

Problem 6

Efficient Tasks

Cliff has a lot of things to do, and not a lot of time to do them. Each task on

his to-do list can be modelled with tuple (a, b) of two durations of time: The

first is the duration for Cliff's hands-on involvement of that task, and the

second the duration of time he can be hands off (the task can finish by itself).

For instance, washing clothes might take 5 minutes for Cliff to load the

washing machine, but the cycle once he starts, it takes 40 minutes (in which

he can do another task). This task would be represented as (5, 40).

Given a set of tasks, Cliff wants to accomplish them as quickly as possible. For instance,

consider two tasks: task A (10, 5) and task B (5, 40). If Cliff does task A first, and task B

afterwards he can complete all tasks in 55 minutes. However, if Cliff starts task B first, he can

complete all tasks in 45 minutes.

Cliff has asked you to figure out the correct order in which to do his to-do list. However, there is

one more wrinkle: some tasks depend on others. For instance, in Cliff's previous example task B

may depend on task A to fully complete before it can be started. In that case, the time to

complete A and B would be 60 minutes.

Given a set of tasks and their dependencies, determine the shortest amount of time it would take

to do them.

Input

The input will start with a single integer n ≤ 10 denoting how many cases will follow. Each case

will start with a number T ≤ 1000 denoting the number of tasks to follow. Each task will be

formatted as a list of numbers. The first number will be a non-negative integer k ≤ 1000

denoting the task's id. The next two numbers are the hands-on and hands-off times of that task

respectively. The next number D, which is nonnegative, denotes how many tasks this task

depends on. Following D, there will be D numbers denoting task ids that this task depends on

Output

For each case, print the minimum time in minutes it would take Cliff to complete all of the tasks

in the case.

Sample Input
2

2

0 10 5 0

1 5 40 0

2

0 10 5 0

1 5 40 1 0

Output Corresponding to Sample Input
45

60

 9

Problem 7

Word Stats

We all know how to crunch statistics with numbers.

But, let us crunch some statistics with words! That is

your job with this program. You want to input words,

convert them to lowercase, remove any punctuation

from them, sort them, then calculate the median of

your word distribution along with the mode.

The median is defined as the word in the middle of

your sorted distribution. If you have an odd number of

words, there is only one median. But, if you have an

even number of words, you will have two words that

define your median.

The mode is the word that occurs more often than any

others. In the event of a tie (multiple words with the same largest frequency), you will print all

words with the largest frequency.

Input

Your program will take one or more words as input. A word is defined as one or more

contiguous characters followed by white space (space, tab, or newline). All words should be

converted to lowercase, and any non-alphabetic characters that start, end, or are contained within

the word should be removed.

Output
Your median should be output first on a single line as shown below. If you have an odd number

of words in your input, a single median word will be output. If you have an even number of

words, you will output two words with a single comma between them, and brackets surrounding

them. For example, “My median=[morrow,night]”.

Your mode should be output on a single line following the median as shown below. Include the

number of occurrences of the mode in parentheses following. Enclose your answer with brackets

like you did for median. In the event of a tie, use a single comma to separate your words & their

occurrences. For example, “My mode=[an (23),the (23)]”. With ties, all words should be

listed in alphabetical order for both the median and mode.

Sample Input
"Good night, good night! Parting is such sweet sorrow,

That I shall say good night till it be morrow.

If love be rough with you, be rough with love. Prick

love for pricking and you beat love down.

These violent delights have violent ends."

Sample Output
My median=[morrow,night]

My mode=[love (4)]

 10

Problem 8

Snow to Water Ratios

Parts of Western North Carolina including Asheville were singing Bing Crosby’s “White

Christmas” last month as many in the area saw snow on December 25th. Snow can be found all

around Asheville throughout January too as the region averages 4.6 inches of snow for the

month. On the UNC Asheville campus, you should definitely check out their impressive

Atmospheric Science Data Center, one of the nation’s largest weather data centers. Here, you

will learn that the amount of snow from a storm can look impressive when it covers your house

and cars, but if you melted the snow, you would discover that little water is actually involved.

The snow to ice ratio or snow ratio expresses how much volume of snow you get for a given

volume of water. Typically, a ratio of 10:1 (ten to one) means that every 10 inches of snowfall

equals one inch of liquid water. However, the snow ratio actually depends on the low

temperature of the air as the table below indicates. For example, 24 inches of snow at 28 degrees

is equal to 24 * (1 inch water/10 inches of snow) = 2.4 inches of water. 28 degrees is closer to

30 degrees than it would be for 25 degrees, and so a ratio of 10:1 is used.

For this problem, you will write a computer program using weather data from n different

locations on a particular date to indicate the location where the most water has fallen. If a

temperature is equal distance from two different values, use the ratio of the higher temperature.

For example, for 15 degrees, use a ratio of 20:1. The sample input below shows four locations

on December 3rd, 1971. That date set an all-time record for snowfall in Asheville.

Input
The first line of input will be a positive integer n representing the number of locations. This is

followed by n lines each with three pieces of information in the following order separated by a

single space: a floating-point number representing total snowfall, an integer representing the low

temperature of the air, and a string for the location in the format: city, state/province.

Output

Output a single line in the exact format below indicating the location and amount of water. The

inches should be rounded to nearest tenth. Assume only one location will have the most water.

Sample Input
4

30.5 18 Calgary, Alberta

25.0 25 Denver, Colorado

16.3 28 Asheville, North Carolina

22.1 16 Syracuse, New York

Output Corresponding to Sample Input
More water fell in Denver, Colorado (1.7 inches)

Temp (F) 30
◦

25
◦

18
◦

12
◦

5
◦

-10
◦

Ratio 10:1 15:1 20:1 30:1 40:1 50:1

 11

Problem 9

Where there’s a Will, there’s Rabbits

There is an old puzzle about a man who raised rabbits, his will, and how a lawyer made everyone

happy.

The old man raised rabbits as a hobby. When he died, he left a will, in which he stated that his

three grandsons should receive his rabbits, to be divided as follows:

One grandson was to receive ½ of the total number of rabbits, the next grandson was to receive

⅓ of the total, and the last grandson was to receive ⅑ of the rabbits.

The lawyer counted the rabbits and discovered that there were exactly 17 rabbits. Hence, the first

grandson should receive 8½ rabbits, the second grandson should get 5⅔ rabbits, and the last

grandson should get 18⁄9 rabbits! What could he do? Fortunately, the lawyer, himself, owned a

rabbit. He brought it to the reading of the will and added his to the other 17 rabbits. He then

proceeded to carry out the terms of the will. He gave the first grandson 9 rabbits, the second one

6 rabbits, and the third one 2 rabbits. He thus gave out 17 rabbits. He took his own rabbit home,

and everyone received as the will specified. Your task is to write a program to solve this

problem in a more general setting.

Input

Each case will consist of the number of rabbits owned by the man, N, and C the number of

people in the will (on one line) and then a list of fractions describing the amounts that each

person is to receive (on the next line). Input will be terminated by a case with N = 0 and C = 0

which is not to be processed. Otherwise, N, C ≥ 1. You may assume that N + k will fit in a 64-bit

integer.

Output

If the sum of the fractions exceeds one, output “Too much!” If the total of the fractions is one,

and no rabbit needs to be subdivided, output “Just right.” Otherwise, you need to find the

smallest number, k ≥ 0, such that N + k rabbits can be distributed without harm to any rabbit. In

this case, output “Bring k rabbits, distribute N+k rabbits, take j rabbits home.” If either k or j are

1, then use the singular “rabbit” instead of “rabbits.”

Sample Input
4 3

1 2 1 3 1 4

8 3

 12

1 2 1 4 1 4

11 2

1 3 1 5

17 3

1 2 1 3 1 9

1 2

1 4 1 4

0 0

Output Corresponding to Sample Input
Too much!

Just right!

Bring 4 rabbits, distribute 15 rabbits, take 7 rabbits home.

Bring 1 rabbit, distribute 18 rabbits, take 1 rabbit home.

Bring 3 rabbits, distribute 4 rabbits, take 2 rabbits home.

 13

Problem 10

Morse Code Decoder

Back in 1844, Samuel Morse sent out the first message

“What Hath God Wrought?” in Morse code over the newly

invented telegraph. In many ways, it was a pioneering

form of texting.

Each character (letter or numeral) is represented by a

unique sequence of dots and dashes. Letters which are

used more frequently like E and T have the shortest

encoding. All letters are separated from one another by

exactly three spaces, and all words are separated from

other words by seven spaces. Your job is to write a

program that decodes a line of Morse code.

Input
You may assume only capital letters and digits are used. Each input file starts out with 36 lines

representing the encoding of letters ‘A’…‘Z’ followed by digits ‘0’… ‘9’. Each letter or digit has

three spaces following it in the input file. A positive integer n, and then n lines of test cases to

decode will follow.

Output

For each of the n test cases in Morse code, output the word(s) it corresponds.

Sample Input Sample Output

A .-

B -...

C -.-.

X -..-

Y -.--

Z --..

0 -----

1 .---

2 ..---

3 ...--

4-

5

6 -...

7 --...

8 ---..

9 ----.

2

-.. -. . -.--

-- .. -.-. -.- . -.-- -- --- ..-

DISNEY

MICKEY MOUSE

