

Consortium for Computing Sciences in Colleges
2022 Virtual Southeastern Programming Competition

Saturday, November 12th, 10 AM – 1 PM EST

There are nine (9) problems in this packet. These problems are NOT necessarily sorted by

difficulty. You may solve them in any order. Remember input/output for the contest will be

from stdin to stdout. Stderr will be ignored. Do not refer to or use external files in your

source code. Extra white space at the end of lines is ignored, but extra white space at the

beginning or within text on a line is not ignored. Reminders for our virtual competition:

• Teams may be comprised of 1 – 4 students.

• Internet access is allowed.

• Video, audio, or text conferencing between team members is allowed, as is any file

transfer.

• Any team found to be communicating with someone other than their teammates for

assistance will be disqualified.

• Four programming languages are allowed: C#, C++, Java 11, Python 3.8.

• The sample input shown on this sheet has been preloaded into the contest system. The

judges will be testing your program on a different, comprehensive set of input based on

the written specifications of the problem.

• An awards ceremony will be held at 1:30 PM EST on our Zoom link.

• Have a lot of fun and good luck! ☺

Problem 1. Easter Sunday

Problem 2. Wordle

Problem 3. Ted Lasso

Problem 4. Minerva’s Toys

Problem 5. Metal Stamping

Problem 6. Lunch Time

Problem 7. Native Alaskan Dice Game

Problem 8. Letter Counts

Problem 9. Encryption Matrix

https://bju.zoom.us/j/93307725103?pwd=clg4c2ZaeDYrRDFQQUpBb3RvcTdTQT09

 1

Problem 1
Easter Sunday

Have you ever wondered how the date of Easter is calculated and why it moves to a different

Sunday every year? This first problem asks you to construct a computer program that will unveil

that mystery. Easter Sunday always falls on the first Sunday after the first full moon of spring.

The algorithm below can be used to calculate Easter Sunday between the years 1982 and 2048.

Remember that mod is short for modulo, and represents the remainder of division.

• Let a equal year mod 19.

• Let b equal year mod 4.

• Let c equal year mod 7.

• Let d equal (19 * a + 24) mod 30.

• Let e equal (2 * b + 4 * c + 6 * d + 5) mod 7.

• Let f equal (22 + d + e). If f is less than or equal to 31, then the date falls on

day f in March. Otherwise, you will need to adjust appropriately for an April date.

Input

The first line of input will be a positive integer n representing the number of test cases. You may

assume that 1 ≤ n ≤ 100. This will be followed by n lines of input each containing the year in

question. If the year falls outside the range from 1982 through 2048, you should output “Date

out of range” as seen below.

Output Corresponding to Sample Input

The output should be formatted exactly as shown below where each line indicates the date of

Easter for the year in question exactly as shown below. Be sure a colon and space follow the

year and precede the date as seen. If the year falls outside the range from 1982 up to 2048, you

should output “Date out of range” as seen below.

Sample Input
5

2023

2022

2010

1986

2049

Sample Output
Easter Sunday in 2023: April 9

Easter Sunday in 2022: April 17

Easter Sunday in 2010: April 4

Easter Sunday in 1986: March 30

Date out of range

 2

Problem 2

In the game of Wordle, there is a new secret word every day. A player has six guesses at

figuring out the correct secret word. Each guess must be a valid word from a word list of

correctly spelled words. After each guess, feedback is given as to whether each letter in your

guess is in the right position compared to the secret word.

Your job is to write a variation of this popular game with the following rules:

1) Each guess must be a word in the word list. If a guess does not appear in the word list, it

does not count as one of their six guesses.

2) A game always ends on the sixth guess or earlier if they guess the secret word correctly.

3) Feedback is given on each incorrect guess. If a letter in the guess matches the letter in

the same position as the secret word, that letter is displayed. If a letter in the guess does

not appear anywhere in the secret word, that letter is changed to the asterisk character. If

a letter in the guess appears in a different location in the secret word, that letter is

displayed with an underscore character. For example, suppose the secret word is heart,

and you guess the word hates, then the feedback would be h___* since letters a, t, and

e are out of place and letter s does not appear in the word heart.

4) Be wary of secret words that utilize duplicate letters. For example, suppose the secret

word is queen. If you guess the word queue, the feedback given should be que*_ since

the first e is correct, but the second e is out of place.

5) All games will be won or lost. Once a player wins, there will not be any extra guesses

after the win.

Input

The first line of input will contain a single integer n, which represents the number of words in the

word list. You may assume that 1 ≤ n ≤ 1000. This will be followed by n words each on a

separate line. Next, a line with an integer D for the number of days being played where 1 ≤ D ≤

100. For each day D, the secret word for that day appears on a line by itself. This is followed

by one or more word guesses, one per line. All guesses consist of five lowercase letters.

Output

For each day, include the day number and word as shown in sample output. This is followed by

each word guessed, and feedback given based on rule 3) above. If a guess is not in the word list,

it should be printed on a line followed by “ was not in the dictionary”. If a user won,

it should be printed along with number of guesses. Use the singular word “guess” if they won

on only one guess. If they lose, print the message “Unfortunately, your sixth guess

was not correct.” Two blank lines should follow each day. Following all days, a summary

of days played, win percentage, the current winning streak, and max winning streak should be

printed as shown. The win percentage should be displayed as an unrounded integer.

 3

Sample Input Output Corresponding to Sample Input

The wordle for day #1 was heart

Your guess #1 was hates = h___*

Your guess #2 was heart = heart

You WON in 2 guesses

The wordle for day #2 was razor

Your guess #1 was racer = ra**r

Your guess #2 was radar = ra**r

Your guess #3 was rager = ra**r

Your guess #4 was error = *_*or

errur was not in the dictionary

Your guess #5 was razor = razor

You WON in 5 guesses

The wordle for day #3 was sassy

Your guess #1 was crass = **_s_

Your guess #2 was cress = ***s_

Your guess #3 was cross = ***s_

Your guess #4 was sassy = sassy

You WON in 4 guesses

The wordle for day #4 was where

Your guess #1 was which = wh***

Your guess #2 was while = wh**e

Your guess #3 was wants = w****

Your guess #4 was would = w****

Your guess #5 was whine = wh**e

Your guess #6 was wheat = whe**

Unfortunately, your sixth guess was not correct

The wordle for day #5 was pound

Your guess #1 was pound = pound

You WON in 1 guess

Played 5

Win % 80

Current Streak 1

Max Streak 3

20

crass

cress

cross

error

hates

heart

point

pound

racer

radar

rager

razor

sassy

wants

wheat

where

which

while

whine

would

5

heart

hates

heart

razor

racer

radar

rager

error

errur

razor

sassy

crass

cress

cross

sassy

where

which

while

wants

would

whine

wheat

pound

pound

 4

Problem 3

Ted Lasso

Chelsea always makes her own themed Halloween costumes for her family and this year the

theme is Ted Lasso. Chelsea wants to be the soccer ball.

Chelsea is pretty good at math and knows that a soccer ball is a truncated icosahedron. She

knows it can be constructed from an icosahedron with the 12 vertices cut off such that one third

of each edge is cut off at each of both ends, thereby creating 12 new pentagon faces, and leaving

the original 20 triangle faces as regular hexagons. Thus, the length of the edges is one third of

that of the original edges.

The radius of the circumscribed sphere of a size 4 soccer ball is 25–26 inches, but Chelsea’s

soccer ball needs to be much larger to fit her. She needs you to help her computer the total area

of both black and white shapes for her soccer ball so she has an idea of how much fabric to buy.

She is experimenting with different sizes and would like you to compute the total area of the

black shapes and the total area of the white shapes for a number of sample radii. She has found a

helpful formula for you. For edge length a, the radius of the soccer ball is
𝑎

4
√58 + 18√5. Write

a program that, given the radius of a soccer ball in inches, computes the area in square yards that

will be enough for the white and black pentagons.

Input

The first line of input will contain a single integer N, which will indicate the number of test

cases. You may assume that 1 ≤ N ≤ 100. Each of the remaining N lines of input will contain a

positive floating point value representing the radius of a soccer ball in inches.

Output

For each of N radii input, your program will output the total area of the black shapes in square

yards and the total area of the white shapes in square yards. Use the exact format below which

includes the case number.

Sample Input
3

27.5

62.50

102.75

Output Corresponding to Sample Input
Case 1: White area: 5 square yards. Black area: 2 square yards.

Case 2: White area: 26 square yards. Black area: 11 square yards.

Case 3: White area: 69 square yards. Black area: 28 square yards.

 5

Problem 4
Minerva’s Toys

Minerva is a puppy, and LOVES her toys. She has also got quite a lot of them. And because she

is a puppy, instead of putting them up, she just leaves them at a random position in the (x,y)

plane. When she resumes play, she wants to know the best place to start so she can have the

most fun.

The way Minerva does this is by finding the two closest toys and standing near one of them. She

then proceeds to wreak havoc, as puppies do.

Given a list of the toys' locations, Minerva wants you to find the distance between the closest

pair of toys.

Input

The first line of input will contain a single integer N, which will indicate the number of test cases

to follow. You may assume that 1 ≤ N ≤ 10. Each case will start with a line with a single integer

P where 2 ≤ P ≤ 1000. The following P lines will contain two floating point numbers indicating

a single (x, y) coordinate.

Output

For each case, you should print out the distance between the two closest points in the set rounded

to three decimal places. For instance, if the closest distance was 1.2345, you should print 1.235.

Sample Input
1

4

1.0 2.0

2.0 1.0

1.0 3.0

-1.0 5.0

Output Corresponding to Sample Input
1.000

 6

Problem 5
Metal Stamping

Bertrand has started a business that manufactures custom machine parts. One of the parts made

at the factory is a thin metal plate. The plate begins as a square ingot of steel. Then, a metal

stamping process cuts small quarter circles out of two opposite corners. The resulting shape

looks like this.

The metal plates are made in various sizes. Your friend needs some help with their design.

Knowing the length of the side of the square ingot that we start with, and the desired finished

width of the plate, a quarter circle of what radius needs to be cut from the opposite corners?

The following diagram illustrates the problem. We have a square with a side length of S. Two

circles, each having radius r, are centered at opposite corners of the square. The metal stamper

will cut quarter circles out of the square ingot where the two circles intersect with the interior of

the square. This will leave a final metal plate shape having a width w. In the diagram, if the line

segment of length w were extended in both directions, it would become a diagonal of the square.

You need to write a program that can determine the value of r, given S and w.

Input

The first line of the input will contain a positive integer N, which is the number of metal plate

designs. Each of the next N lines of input will contain S, the square’s side length, followed by w,

the desired width of the metal plate. The numbers S and w will be separated by one or more

space characters. You may assume that 2 ≤ N ≤ 100, and that S and w are positive real numbers

less than 1000. The value of w will be less than the diagonal of the square. In every input case,

a value for r can be determined.

Output

For each test case, there will be one line of output. The format of each line of output is:
Metal plate <number> needs r = <radius>

where <number> identifies which input case and counts sequentially from 1 up to N, and

<radius> is rounded to the nearest thousandth and formatted to exactly three decimal places.

 7

Sample Input
3

1 0.5

2 2

3.5 4

Output Corresponding to Sample Input
Metal plate 1 needs r = 0.457

Metal plate 2 needs r = 0.414

Metal plate 3 needs r = 0.475

 8

Problem 6

Lunch Time

Arielle owns a business that allows its employees to have flexible work schedules. Subject to

their supervisor’s approval, employees are free to choose when to begin work and when to go

home. Their supervisor also allows a lunch break. According to company policy, the lunch

break must be given exactly during the middle of an employee’s day on the job. Theoretically,

every employee in the company could have different work hours and lunch break durations.

Therefore, we would like you to write a computer program to determine the start and end times

of an employee’s lunch break.

An instance of this problem is one employee’s work schedule for the day: The time at which the

employee is expected to begin work for the day, and when work is finished for the day. In

addition, we are given the length of the employee’s lunch break, in minutes.

Assumptions:

• All clock times in this program will be expressed using a 24-hour clock, from 0:01

(meaning 12:01 a.m.) to 23:59 (meaning 11:59 p.m.) The duration of the work day and

the lunch period are an even number of minutes. The work day will not begin before

0:01 nor end after 23:59.

• The lunch break is to be centered during the work day. In other words, the employee will

work for equal amounts of time before and after lunch. For example, if an employee

works from 9:00 to 17:00 (9 a.m. to 5 p.m.) and has 80 minutes for lunch, then the lunch

period should be 12:20 to 13:40 (12:20 p.m. to 1:40 p.m.)

• The length of the lunch break is less than the total work day. In other words, lunch

begins after the work day has started, and lunch ends before the end of the work day. In

other words, there will be work to do before and after lunch.

Input

The first line of input will contain a phrase of the form:
<N> employees

where N is a positive integer and 2 ≤ N ≤ 50. Each of the next N lines of input will have this

format:
start <time> finish <time> lunch break <L> minutes

where <time> represents a time of day on a 24-hour clock, and <L> is a positive even integer.

 9

Output

There will be one line of output for each employee. The format of a line of output is:
Employee <number> can eat lunch from <time> to <time>.

where <number> is a sequential number identifying each employee in sequence from 1 to N, and

the <time> expressions give the starting and ending times of the lunch break in 24-hour format.

The sentence ends with a period. If any time is before 10 o’clock, do not print a leading zero. In

other words, 9 o’clock should be printed as 9:00, not as 09:00.

Sample Input
5 employees

start 9:00 finish 17:00 lunch break 80 minutes

start 9:00 finish 16:30 lunch break 60 minutes

start 8:30 finish 16:30 lunch break 120 minutes

start 8:00 finish 17:00 lunch break 60 minutes

start 8:00 finish 16:30 lunch break 30 minutes

Output Corresponding to Sample Input
Employee 1 can eat lunch from 12:20 to 13:40.

Employee 2 can eat lunch from 12:15 to 13:15.

Employee 3 can eat lunch from 11:30 to 13:30.

Employee 4 can eat lunch from 12:00 to 13:00.

Employee 5 can eat lunch from 12:00 to 12:30.

 10

Problem 7

Native Alaskan Dice Game

Native Alaskans have a popular dice game called “Animal Names” that helps teach children

different names of common animals in two of their twenty Native Alaska languages: Denaakk’e

and Gwich’in. The game is a way to add some fun to language learning and pass on the Native

Alaskan culture to the next generation by simply rolling three dice. In the game, six animals

appear on the faces of the first die: Raven, Eagle, Moose, Caribou, Salmon, and Beaver.

On the second blue die, the names are in Denaakk’e. On the third green die, the animal names

are in Gwich’in. The rules of Animal Names stipulate that one player rolls the three dice, but all

players try to be the first one to call the roll. There are three different calls: all different, a pair,

and all three. The player who first calls the roll correctly wins the point and makes the next roll.

The winner is the one with the most total points in a set number of rolls.

 11

Input

The first six lines of input will each consist of three tokens separated by a single space: an

animal name, and its equivalent in Denaakk’e and Gwich’in. This will be followed by a line

with two integers, N and P, representing the number of rolls and number of players respectively.

You may assume 5 ≤ N ≤ 100 and 2 ≤ P ≤ 5. This is followed by N lines each with four tokens

separated by space. The first three tokens represent what is rolled by the three dice in any order.

The fourth token represents the initials of which of the P players won that particular point.

Assume only one game played.

Output

For each of the N rolls, your program should print out one line with the initials of the player who

won each point along with their call (all different, a pair, or all three) in the format

below. This is followed by a blank line, and then a line with the the initials of the player with the

most points and their total points as seen below. Assume no ties. You keep playing until a tie is

broken.

Sample Input
Raven Dotson Deetrya

Eagle Telel Tthak

Moose Deneege Dinjik

Caribou Medzeyh Vadzaih

Salmon Ggaal LukChoo

Beaver Noyee Tsee

16 3

Telel Eagle Tthak AD

Beaver Tsee Telel CH

Tthak Ggaal Caribou JK

Salmon Ggaal Tsee AD

Raven Dotson Tsee CH

Noyee Vadzaih Moose JK

Dotson Tthak Eagle AD

Beaver Tsee Noyee CH

Deneege Dinjik Raven JK

Raven Dotson Tsee AD

Dinjik Moose Deneege CH

Medzeyh Beaver Tsee JK

Eagle Tthak Telel AD

Ggaal Tthak Salmon CH

Deneege LukChoo Salmon JK

LukChoo Deneege Salmon JK

Output Corresponding to Sample Input
AD won on all three

CH won on a pair

JK won on all different

AD won on a pair

CH won on a pair

JK won on all different

AD won on a pair

CH won on all three

JK won on a pair

AD won on a pair

CH won on all three

JK won on a pair

AD won on all three

CH won on a pair

JK won on a pair

JK won on a pair

JK won the game with 6 points

 12

Problem 8

Letter Counts

You are interested in writing a program to analyze the letters used in strings. Specifically, you

are interested in which letters appear, which letters do not, and which letter appears the most.
The case of the letters does not matter. Assume all letters in the output will be lowercase and

that there will always be at least one letter used or missing. All non-letters input are ignored.

Your printing of the letters used and missing should appear in alphabetical order. If there is a tie

between the letters that appear most often, print the one that would come first alphabetically.

Input

The first line of input will contain a single integer n, which represents the number of cases. You

may assume that 1 ≤ n ≤ 100. This will be followed by n test cases. Each test case consists of a

string of length m where 1 ≤ m ≤ 80.

Output

For each test case, print the case number followed by the ‘>’ character as seen below. This is

followed by the label “Used: “, the letters used in alphabetic order, a semicolon, a blank, the

label “Missing: “, a semicolon, a blank, the label “Most Used: “, and the letter most used.

Sample Input
3

The quick brown fox jumped over the lazy dog.

She sold seashells by the seashore.

Go hang a salami...I am a lasagna hog.

Output Corresponding to Sample Input
Case 1> Used: abcdefghijklmnopqrtuvwxyz; Missing: s; Most Used: e

Case 2> Used: abdehlorsty; Missing: cfgijkmnpquvwxz; Most Used: s

Case 3> Used: aghilmnos; Missing: bcdefjkpqrtuvwxyz; Most Used: a

 13

Problem 9

Encryption Matrix

Some modern methods make use of matrices as part of the encryption and decryption process.

One way of encrypting a word is to encrypt pairs of letters in the word together. One way of

doing this is to fill a 6 x 6 square matrix with the 26 capital letters and the ten digits ‘0’ through

‘9’. Each letter and digit appears exactly once in the square. To encrypt a letter pair, the

rectangle formed by the two letters is used. Each letter of the original pair is replaced by the

letter located in the same row and in the other corner of the rectangle. If both letters happen to

be in the same row or same column, the letters are swapped. For example, in the matrix below,

DR is encrypted as FP.

Input

The first six lines of input will be the 6 x 6 square encryption matrix in row major order. This is

followed by a single integer n, which represents the number of cases. You may assume that 1 ≤

n ≤ 100. This will be followed by n test cases. Each test case consists of a string of length m

where 1 ≤ m ≤ 80. The string will consist solely of one or more uppercase letters. If the test case

contains an odd number of letters, the last letter is unchanged.

Output

For each of the n test cases input, print Word #n followed by the test case and its encrypted

version in the format below.

Sample Input Output Corresponding to Sample Input

S T U V W X

Y Z 0 1 2 3

4 5 6 7 8 9

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z 0 1 2 3

4 5 6 7 8 9

A B C D E F

G H I J K L

M N O P Q R

4

DIGITAL

LOGIC

MICROPROCESSOR

COMPUTER

Word #1 DIGITAL is encrypted as CJIGSBL

Word #2 LOGIC is encrypted as IRIGC

Word #3 MICROPROCESSOR is encrypted as OGFOPOORECSSRO

Word #4 COMPUTER is encrypted as OCPMTUFQ

