

Consortium for Computing Sciences in Colleges
2023 Southeastern Programming Competition

Saturday, November 4th, 10 AM – 1 PM EDT

There are nine (9) problems in this packet. These problems are NOT necessarily sorted by

difficulty. You may solve them in any order. Remember input/output for the contest will be

from stdin to stdout. Stderr will be ignored. Do not refer to or use external files in your

source code. Extra white space at the end of lines is ignored, but extra white space at the

beginning or within text on a line is not ignored. Here are some reminders for our competition.

● Each team may comprise 2–4 students, but only up to two students can be at a machine at

a time.

● Internet access is only allowed to consult the APIs of a programming language. Cell

phone usage is not allowed at any time.

● Any team found to be communicating with someone other than their teammates for

assistance will be disqualified.

● Four programming languages are allowed: C#, C++, Java, Python

● An awards ceremony will be held at 1:30 PM EST.

● Have a lot of fun and good luck! 😊

Problem 1. The Myrtle Beach Marathon

Problem 2. The Spelling Bee

Problem 3. Time to Accelerate!

Problem 4. Adjective Order

Problem 5. Tangent Line to Ellipse

Problem 6. Stacks of Material

Problem 7. Creepy Critters Science Club (CCSC)

Problem 8. Olympic Dilemma

Problem 9. The Munchkins

 1

Problem 1
The Myrtle Beach Marathon

The Myrtle Beach Marathon is an event held in South Carolina every year. Every first Saturday

in March, between 5,500 and 7,500 people come together to compete in the 26.2 mile race. It

stands as the biggest marathon in South Carolina, utilizing a flat, speedy, and enjoyable course

that stretches along the picturesque Grand Strand.

In order to prepare for the marathon, you plan to do some training on the firm sand of the

beaches of Cocoa Beach, Florida, as well as outside the United States along the shores of

Cancun, Mexico. In Mexico, mileage is marked in kilometers.

You will write a program that will let one enter the distances and times of your training runs on

different days, and will calculate and print out a summary of the miles, kilometers, time, and

pace per mile and kilometer of each day. In addition, the overall distance and time run will be

shown. Note that there are 1,609.34 meters in one mile and 1,000 meters in one kilometer.

Input

The input to your program will contain at least one day of training distances and times. The last

line in each day of running is the line LAST and should not be processed. The end of all input is

indicated by the line END and should not be processed. All lines of data from a particular day of

training consist of one or more distances followed by a single lowercase letter "m" or "k". The

letter "m" indicates miles, and the letter "k" indicates kilometers. This is followed by a single

space, and then the total time in hours, minutes, and seconds (hh:mm:ss).

Output

The program should print a summary in tabular format as shown on the next page. Include

headings on the first line for the miles, kilometers, time, pace/mile, and pace/km of each leg.

This is followed by a blank line and then the label Day, followed by the day number and

corresponding statistics for that particular day. All pace output should be in the format

hh:mm:ss. Lastly, print a blank line followed by a line with the overall distance for all days in

miles and kilometers and a line with the overall time spent running in days, hours, minutes, and

seconds (dd:hh:mm:ss). You may assume the total time will be less than 100 days.

All data output should be left-justified. Output distances to two decimal points. All data output

should be lined up in columns. Use one tab between each column, except for Pace/mile and

Pace/km which are each preceded by two tabs. Your output should not be more than 80

columns wide. Column headers should be aligned above the data as shown.

 2

Sample Input
13.1m 02:24:44

13.1m 02:24:59

LAST

26.2m 04:29:53

LAST

8k 00:41:41

8k 00:39:53

8k 00:41:00

5k 00:24:14

5k 00:23:29

5k 00:23:25

LAST

42k 03:41:44

LAST

20m 02:34:11

LAST

END

Output Corresponding to Sample Input
 Miles Km Time Pace/mile Pace/km

Day1 26.20 42.16 04:49:43 00:11:03 00:06:52

Day2 26.20 42.16 04:29:53 00:10:18 00:06:24

Day3 24.23 39.00 03:13:42 00:07:59 00:04:58

Day4 26.10 42.00 03:41:44 00:08:29 00:05:16

Day5 20.00 32.19 02:34:11 00:07:42 00:04:47

Overall Distance of 122.73 miles (197.52 km)

Overall Time of 00:18:49:13

 3

Problem 2
The Spelling Bee

Spelling bee is a game with a 7-letter hexagon at the center. Players get points

by forming words with four or more letters that include the letter in the center

of the grid. A single letter can be used multiple times and each puzzle will have

at least one pangram – a word that uses all 7 letters. For example, COFOUNDED

is a pangram using the hexagon here. Four-letter words will get you one point.

Starting with five-letter words, players receive one point per letter. Pangrams

earn seven additional points. For example, CEDE is 1 point, CODED is 5 points,

and COFOUNDED is 16 points. The game offers a hint that displays the number

of words that start with each letter, along with how many words there are of

each length. This information is organized in the form of a frequency chart as

seen below. You are also told the number of words, maximum score, and number of pangrams.

Your job is take an input file of all possible words formed by a given spelling bee and print a

frequency chart like the one above along with all the pangrams and the maximum score.

Input

The first line of input will contain a single integer n, which represents the number of words in the

input file. You may assume that 1 ≤ n ≤ 100. This will be followed by n words in sorted order

each on a separate line. For each word, the first letter will always be capitalized. All other

characters will be lowercase and alphabetic. All words will be of length l where 4 ≤ l ≤ 12.

Output

Your program should output a nine row by eleven column frequency matrix in the format below.

The first row acts as a header for each of your lengths l starting at 4 and ending at 12 along with

the total sum of frequencies on that row. Rows two through eight represent the frequencies of

each of your seven letters. The final row represents sums of each of your ten columns. This is

followed by a blank line, each word that is a pangram on separate lines in sorted order, and the

maximum score. All frequencies and column headers less than ten should be followed by two

spaces; all others are followed by one space. Each letter at the start of rows two through eight is

followed by three spaces, while the word Sum on line nine is followed by one space.

 4

 Sample Input Output Corresponding to Sample Input

 4 5 6 7 8 9 10 11 12 Sum

C 6 6 4 3 4 1 1 0 0 25

D 1 2 2 2 1 1 0 0 0 9

E 0 1 2 1 0 0 0 0 0 4

F 0 1 2 0 0 0 0 0 0 3

N 0 1 1 0 0 0 0 0 0 2

O 1 1 0 0 0 0 0 0 0 2

U 0 0 1 1 1 0 0 0 0 3

Sum 8 12 12 7 6 2 1 0 0 48

Cofounded

Confounded

279 pts

48

Cede

Ceded

Cocoon

Cocooned

Code

Coded

Codon

Coed

Coffee

Cofound

Cofounded

Concede

Conceded

Condo

Condone

Condoned

Cone

Coned

Confound

Confounded

Conned

Cooed

Cued

Cuff

Cuffed

Deco

Decode

Decoded

Deduce

Deduced

Denounce

Denounced

Deuce

Dunce

Educe

Educed

Encode

Encoded

Fecund

Fence

Fenced

Neocon

Nonce

Once

Ounce

Unceded

Uncuff

Uncuffed

 5

Problem 3

Time to Accelerate!

Jessica is majoring in mechanical engineering. In her freshman year, she is currently taking a

physics class. One type of problem that Jessica is most interested in is calculating how long it

takes for a car to accelerate within a certain distance. For example, if we want to speed up from

40 m.p.h. to 60 m.p.h, and we want to accomplish this in a distance of 0.3 miles, how long would

that take? The answer, when rounded to the nearest second, is 22 seconds. Throughout this

problem, we will assume uniform acceleration, otherwise known as constant acceleration.

You will write a program that will help Jessica verify her answers to problems involving this

kind of uniform acceleration.

Input

The first line of the input will contain a positive integer n ≤ 100, representing the number of test

cases. Each of the remaining n lines of input represents a test case. Each test case consists of

three real numbers:

• v1, the initial speed before the acceleration

• v2, the final speed at the end of the acceleration

• d, the distance in miles over which the acceleration took place

You may assume that v2 > v1.

Output

For each test case, your program needs to output the amount of time it takes to perform this

acceleration. Your output must be rounded to the nearest second, and be shown in the format

mm:ss. In other words, the number of minutes and seconds should be separated by a colon with

no intervening spaces. The number of seconds must be printed as a two digit number. If the

number of seconds is less than ten, then a leading zero is required. If the time is less than 1

minute, than your output must display the number of minutes as zero.

Sample Input
3

40 60 0.3

45 65 1

46.5 52.25 0.5

Output Corresponding to Sample Input
0:22

1:05

0:36

 6

Problem 4

Many times in English prose, we use two adjectives to modify a noun. For example, “big red

apple.” Or should it be “red big apple?” It turns out that “big red apple” is correct idiomatic

English, while “red big apple” is not. If we want the adjectives “big” and “red” to modify

“apple,” then “big” must come before “red.”

According to the Cambridge English Dictionary, the rules determining which of two adjectives

should appear first can be established as follows. Adjectives are classified into the following ten

categories:

Category Description Four example adjectives of each category

1 opinion beautiful, delicious, reliable, unusual

2 size big, deep, small, tall

3 physical quality rough, shiny, thin, untidy

4 shape oval, round, square, rectangular

5 age elderly, old, young, youthful

6 color blue, green, red, yellow

7 origin American, Chilean, Dutch, Japanese

8 material brass, plastic, steel, wooden

9 type four-sided, general-purpose, L-shaped,
U-shaped

10 purpose cleaning, cooking, frying, hammering

When multiple adjectives modify a noun, each adjective must come from a higher-numbered (or

equal) category than the adjective that precedes it. In other words, suppose a phrase has this

structure: Adj1 Adj2 Noun, showing two adjectives before a noun. Let C(Adj i) be the category

number (1–10) of adjective number i. Then, we must verify that C(Adj1) ≤ C(Adj2). If

C(Adj1) > C(Adj2), then the adjective order is incorrect.

For example, in the phrase big red apple, big comes from category 2, and red comes from

category 6. Since 2 ≤ 6, big and red are in the correct order when we say big red apple.

You need to write a program that will check the appropriate order of adjectives in cases where a

noun is being modified by two adjectives.

Input

The first line of the input will contain a single positive integer n, which less than 100. This

represents the number of test cases. Each of the next n lines of input contains one test case. A

test case is a three-word phrase of two adjectives followed by a noun. Words may be

hyphenated. The only adjectives that you will ever see in the input are listed in the third column

of the table above. You may also assume that an adjective belongs to a single category.

 7

Output

For output, your program needs to indicate whether each phrase has its adjectives in the correct

order or not. Suppose the format of an input test case is A1 A2 N. If the adjective order is

correct, then the output format should be:
"A1 A2 N" is correct

But if the adjective order is incorrect, the output format should be:
"A1 A2 N" is incorrect – should be "A2 A1 N"

Note that the quotation marks are required in the output.

Sample Input
3

big tall statue

shiny big car

rectangular cleaning brush

Output Corresponding to Sample Input
"big tall statue" is correct

"shiny big car" is incorrect - should be "big shiny car"

"rectangular cleaning brush" is correct

 8

Problem 5
Tangent Line to Ellipse

One question that frequently arises in calculus is finding the equation of a line that is tangent to

an ellipse at a particular point. You will write a program that solves some problems of this type.

Let us assume that an ellipse is centered at the origin (0,0). Then, the general equation of the

ellipse is:

𝐴𝑥2 + 𝐵𝑦2 = 𝐶

Assuming that the point (d, e) lies on the ellipse, it is possible to find the slope of the line

tangent to the ellipse at this point using standard techniques of differentiation, and from there we

can write the equation of the tangent line. For example, the equation of the line tangent to

9𝑥2 + 12𝑦2 = 129 at the point (-3, 2) is y = 1.125x + 5.375.

Input

The first line of the input will contain a positive integer n, which will be less than 100. Each of

the next n lines of input will contain five real numbers, A, B, C, d, e, as described above. These

five numbers will be separated from each other by one or more spaces. You may assume A

through C are positive and (d, e) lies on the ellipse. Your program needs to find the equation of

the tangent line, and display it in slope-intercept form: y = mx + b. You may assume that the

tangent line is neither horizontal nor vertical. Note that when creating test cases, a correct value

of C is necessary in order to ensure that the given point (d, e) lies on the ellipse. In solving this

problem, you will find that C is never used.

Output

Each test case will have one line of output. A line of output should be formatted as follows.
 Line #k: y = mx + b

where k indicates the number of the test case, 1 through n. The values of m and b are to be

rounded to the nearest thousandth, and displayed to exactly three decimal places. Note that if the

y-intercept is negative, the plus sign must be replaced with a minus sign to indicate a negative

number. Print two spaces after the colon, one space on each side of the equals sign, and one

space on either side of the plus or minus sign.

Sample Input
2

9 12 129 -3 2

1.5 2.5 0.685 0.2 -0.5

Output Corresponding to Sample Input
Line #1: y = 1.125x + 5.375

Line #2: y = 0.240x – 0.548

 9

Problem 6

Stacks of Material

Steve is trying to figure out how much raw material he needs to complete the builds he is

working on. Simple builds were easy to calculate. For example, Steve built a house that required

64 wooden planks. Since a wooden log produces four planks, he calculated that he needed to

gather sixteen logs. Things got more complex when he started using a variety of different

materials like stairs and slabs. A total of six planks are required to craft four stairs, and three

planks are used to craft six slabs.

So, when a house remodel required an additional 64 planks, 16 stairs, and 12 slabs; he needed 64

+ 24 + 6 = 94 planks in total. That requires 24 logs (of course, we needed to round up, to make

sure we have enough). Steve is tired of doing all of these calculations himself and wants you to

help him. He will tell you the types of raw material he wants to gather, the recipes to convert

materials, and how much material he needs for his builds. He wants you to tell him how much

raw material he needs to gather. Note that there will always be only one way to craft a material.

Every material will either be considered raw, or there will be exactly one recipe that outputs it.

Input

The first line of input will be positive integer n ≤ 100 denoting the number of cases to consider.

The first line of each case will be the name of the build. The following line will be a set of

positive three integers, m, r, p ≤ 100. The next m lines will be a list of raw materials. Each of

these lines corresponds to a single material that is considered raw. The following r lines will be a

list of recipes. Each recipe line will contain the following: a number of comma separated inputs

to the recipe, a greater than sign, and the output to the recipe. Each input and output is preceded

by the number of materials required or generated. Finally, the following p lines are a list of

products required in the build. Each of these lines will be a material preceded by the number of

that material required.

Output

For each case, you should output the name of the build and all of the required raw materials. The

materials should be listed next in alphabetical order on separate lines. Each of these lines should

start with two spaces, followed by the number of that material required, a single space, then the

name of that material. Keep in mind that the number of materials should always be a positive

integer that represents the minimum required. Do not print any raw materials that are

unnecessary to the build.

 10

Sample Input
2

Wooden Stairs and Slabs

2 3 3

cobblestone

log

1 log > 4 plank

3 plank > 6 slab

6 plank > 4 stair

64 plank

16 slab

12 stair

A Stack of Pistons

4 3 1

oak-log

cobblestone

iron-nugget

redstone-dust

1 oak-log > 4 oak-plank

3 oak-plank, 4 cobblestone, 1 iron-ingot, 1 redstone-dust > 1 piston

9 iron-nugget > 1 iron-ingot

64 piston

Output Corresponding to Sample Input
Wooden Stairs and Slabs

 23 log

A Stack of Pistons

 256 cobblestone

 576 iron-nugget

 48 oak-log

 64 redstone-dust

 11

Problem 7

Creepy Critters Science Club (CCSC)

The Creepy Critters Science Club (CCSC) is very popular with kids, and there are multiple

chapters around the country. This year the annual CCSC convention was held at Leech Lake in

beautiful Mosquito Acres, Minnesota. Each child was given a magnifying glass and five

specimen jars as souvenirs. The magnifying glasses and specimen jars are identical.

But, you know how kids are. When it is time to go home, they just throw things in their bags.

And when they got home, they realized that some had forgotten some or all their souvenirs, and

some had taken souvenirs that were not theirs.

This would not be a problem if items could be properly distributed within each of the chapters.

For example, if there are three children in a chapter, and those children brought home a total of

three magnifying glasses and fifteen specimen jars, they can be correctly distributed at the next

local chapter meeting.

Your task is to determine whether items can be properly distributed within all chapters.

Input

The first line contains an integer 𝑐 (2 ≤ 𝑐 ≤ 100), the number of test cases.

For each test case, there follows:

• A line with an integer 𝑛 (2 ≤ 𝑛 ≤ 10,000), the number of children at the Leech Lake

convention. (children are identified by the integers 0. . 𝑛 − 1)

• 𝑛 lines (one for each child 𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1) each containing two integers 𝑚 and 𝑠, the

number of magnifying glasses and specimen jars that child 𝑖 brought home.

• A line with an integer 𝑝 (0 ≤ 𝑝 ≤ 10,000), indicating the number of 𝑢, 𝑣 pairs to follow.

Each 𝑢, 𝑣 pair indicates that child 𝑢 and child 𝑣 are in the same chapter.

• 𝑝 lines, each containing 𝑢 and 𝑣 (0 ≤ 𝑢, 𝑣 ≤ 𝑛 − 1)

Output

For each test case, print the case number in the format below followed by a single colon, a single

space, and then print yes if the items can all be properly distributed within a chapter, otherwise

print no as follows.
Case #c: yes/no

 12

Sample Input
2

5

0 7

2 3

1 5

2 4

0 6

3

0 1

1 2

3 4

3

0 0

1 4

1 5

1

0 1

Output Corresponding to Sample Input
Case #1: yes
Case #2: no

Explanation of Sample Input and Corresponding Output

The first line indicates there are two test cases. For the first test case:

• There are 5 children.

• Child 0 brought home 0 magnifying glasses and 7 specimen jars. Child 1 brought home 2

magnifying glasses and 3 specimen jars. Child 2 brought home 1 magnifying glass and 5

specimen jars. Child 3 brought home 2 magnifying glasses and 4 specimen jars. Child 4

brought home 0 magnifying glasses and 6 specimen jars.

• There are 3 pairings. Children 0 and 1 are in the same chapter. Children 1 and 2 are in

the same chapter. Children 3 and 4 are in the same chapter.

• For the chapter containing children 0, 1, and 2, there is a total of 3 magnifying glasses

and 15 specimen jars. For the chapter containing children 3 and 4, there is a total of 2

magnifying glasses and 10 specimen jars. So for all chapters, items can be distributed at

the next chapter meeting. So the answer is “yes.”

For the second test case:

• There are 3 children.

• Child 0 brought home 0 magnifying glasses and 0 specimen jars. Child 1 brought home 1

magnifying glass and 4 specimen jars. Child 2 brought home 1 magnifying glass and 5

specimen jars.

• There is 1 pairing. Children 0 and 1 are in the same chapter. Child 2 is the only member

of a chapter.

• For the chapter containing 1 child, the correct number of magnifying glasses and

specimen jars have been brought home. For the chapter containing 2 children, a total of 1

magnifying glass and 4 specimen jars have been brought home, which cannot be

distributed correctly. So the answer is “no.”

 13

Problem 8

Olympic Dilemma

Mr. Olympia is training for his next meet and needs some help with training. When he is

working out, he typically has a target weight he wants to load on his barbell. However, he does

not have many plates so sometimes he cannot make that weight exactly. So, he will typically

load the barbell to be as close to that weight as possible without going over to prevent injury.

As you can imagine, as he is bought more plates, figuring out how to load the barbell has become

challenging. So, he has asked you to write a program to figure out how to load his barbell. In

particular, he will give you a target weight and a set of plates. From there, he wants you to

provide the best way to load the barbell. That is,

• It should be as close as possible to the target weight without going over.

• If there are two possible ways to load barbell, pick one with the least number of plates.

• Be greedy. Load the largest available weights first.

Note that the barbell already weighs 45 pounds. So, if you are targeting 100 pounds, you only

need to account for 55 pounds of plates. You may assume that all plates need to be added in

pairs. So, if your weight set has three ten pound weights, you really can only use two of them

since the barbell has to be balanced on both sides equally.

Input

Input will start with a positive integer N denoting how many cases are to follow. A case is

structured as follows: It starts with a positive integer P denoting how many types of plates Mr.

Olympia has. The next P lines will contain two positive integers representing the weight W and

the number C of plates of that type, each separated by a single space. After the list of plates,

there will be a number of scenarios for that set of plates.

The next line will be a positive integer S denoting the number of scenarios, followed by S lines.

Each line will have a single positive integer denoting a target weight. Mr. Olympia works out a

lot, but he does not do many lifts. There will be at most ten total cases, and each case will never

have more than 40 total plates, and five scenarios.

 14

Output

For each scenario, output the plate type and number of plates of that type which Mr. Olympia

should use. Note that if the target weight is below 45, there is no way to load the barbell and

stay under that weight. In that case, output "No solution.” Also, in some cases, Mr. Olympia

will not need to add any plates to hit his target weight. In that case, output "No plates.” Print

all weights in descending order in the format plate_type x number_of_plates. Use a

comma followed by a single space between each weight as shown below.

Sample Input
1

3

10 4

20 2

25 2

5

10

50

100

150

200

Output Corresponding to Sample Input
No solution

No plates

25 x 2

25 x 2, 20 x 2

25 x 2, 20 x 2, 10 x 4

 15

Problem 9
The Munchkins

The Munchkin people of Munchkin Country in the Land of Oz are a fun, happy, peace-loving

people who have a big problem. They have very little depth perception and are constantly

running into doors. They have asked you to write a program to let them know when they should

duck going through a doorway. Since Munchkins love fun, some of their doorways have been

made intentionally short to force other Munchkins to either crawl or limbo through the door.

Unfortunately, the Munchkins do not all use the same set of measurements, so some heights are

measured in inches, others in feet, others in yards, others in centimeters, and others in meters.

To do the conversions, recall that 1 inch equals 2.54 centimeters, 1 foot equals 12 inches, 1 yard

equals 3 feet, and 1 meter equals 100 centimeters.

Input

The input will begin with a single line, telling you how many Munchkins want help. Then, for

each Munchkin, there will be data about the Munchkin and the doorways they reach. The first

line of each dataset will give you the Munchkin's name (all Munchkins have names of exactly six

characters), an integer n, the number of doors to process for this Munchkin (n > 0), and the

Munchkin's height, a floating point number followed by exactly one blank space and then one of

i, f, y, c, or m (representing inches, feet, yards, centimeters, and meters). The next n lines will

have the height of the doorways in the bumpkin's life, one per line. Each height will be a floating

point number followed by exactly one blank and one of i, f, y, c, or m (representing inches, feet,

yards, centimeters, and meters).

Output Corresponding to Sample Input

For each Munchkin, print the name of the Munchkin on one line and then for each door, print the

way the Munchkin should travel through the door. Decide on a mode of travel based on the table

below, where b is the height of the Munchkin, d is the height of the door (expressed in the same

units) as shown on the table below.

Door height Travel method

d > b * 1.25 Stilts

b * 1.25 >= d > b * 1.05 Walk

b * 1.05 >= d > b * 0.65 Duck

b * 0.65 >= d > b * 0.40 Crawl

b * 0.40 >= d > b * 0.25 Limbo

b * 0.25 >= d Blocked

Have one blank line after each data set.

 16

Sample Input
2

Mookin 3 150.4 c

75 i

2 f

151 c

Kimkin 1 67.3 i

204.5 c

Sample Output
Mookin

Doorway 1: Stilts

Doorway 2: Crawl

Doorway 3: Duck

Kimkin

Doorway 1: Walk

