
Effects of Graph Augmentation of Graph
Neural Network Twitter Bot Detection Models

Juan Sanchez Moreno and Karen Works
Department of Computer Science

Florida State University
Panama City, FL 32405

jfs22b@fsu.edu, keworks@fsu.edu

1 Introduction

There is a growing concern about the presence of bots in social media, es-
pecially on Twitter (now X). These bots can spread misinformation, impose
narratives, and distort the reality of the platform’s users. One current ap-
proach to identifying bots utilizes Graph Neural Networks (GNN). The goal of
our research is to identify a GNN that is both accurate and efficient. These
two constraints can be competing forces. To increase accuracy, often requires
more data which leads to longer processing times. To increase efficiency, often
requires less data to be processed which leads to a decrease in accuracy.

2 Dataset and Baseline Model

TwiBot-20 [3] is the "big data set" used in Twitter bot detection GNN model.
For our research we used TwiBot-22 [2], the latest version of TwiBot which
has more features between data points. We seek to improve the BotRGCN
[3] model. Hence we started by creating the GNN outlined in BotRGCN [3]
model. Our results were sufficiently close to the original BotRGCN model [2]
and serve as the baseline for our experiments.

3 Results and Discussion

We first located the combination of relationships that yielded the best infer-
ence accuracy, which was the combination of the followers and the quoted
relationships. The test accuracy of this relationship pair was 0.7802 which is
approximately 0.5% higher than our baseline.

1

Given the success of DropMessage [1], we then explored dropping edges.
Edge dropping has been shown to produce a more robust model [1]. In addition,
it requires less CPU time to make predictions on a reduced graph. We measured
efficiency as the time it took a model to make inferences on the full dataset
(training + testing) 200 times. We found the best-performing random edge
dropping of both accuracy and inference time at 5% which reported an average
completion time of 18.3 s with a test accuracy of 0.7256.

Then, we considered taking a more planned approach to select edges to
drop from nodes that have at least 4 edges already. Our goal is to prevent loss
of connectivity to any edge. This technique revealed promising results. The
model’s average inference accuracy peaks at 0.7730 with 3% edge reduction.
This is close to our baseline with no edge drops resulting in a 0.19% lower
inference accuracy than our baseline. However, there was an inference CPU
time efficiency increase. The best-performing value of edge dropping (3%)
reported an average completion time of 18.21 s on the test while the model
with the lowest dropping value (0.01%) reported an average of 18.5 s. This is
a 0.29 second difference.

4 Conclusion

We successfully built a GNN with a combination of relationships that pro-
duced a higher prediction accuracy than our baseline and edge dropping that
decreased the CPU execution time. The graphs created from social network
data are massive and constantly change to reflect real time relationships. Sup-
porting these requires expensive computations to train and make predictions
running these models continuously. In the future, the development of a real
time efficient edge-dropping technique could be used to reduce this overhead.

References

[1] Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang
Yang. Dropmessage: Unifying random dropping for graph neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages
4267–4275, 2023.

[2] Shangbin Feng, Zhaoxuan Tan, Herun Wan, Ningnan Wang, Zilong Chen, Binchi
Zhang, Qinghua Zheng, Wenqian Zhang, Zhenyu Lei, Shujie Yang, et al. Twibot-
22: Towards graph-based twitter bot detection. Advances in Neural Information
Processing Systems, 35:35254–35269, 2022.

[3] Shangbin Feng, Herun Wan, Ningnan Wang, Jundong Li, and Minnan Luo.
Twibot-20: A comprehensive twitter bot detection benchmark. In Proceedings
of the 30th ACM international conference on information & knowledge manage-
ment, pages 4485–4494, 2021.

2

Evaluating Parallel Processing Using Merge Sort

Sam Bostian, Michael Rizig, Jonathan Turner, Eli Headley, Charlie McLarty, Ernesto Perez and Daron Pracharn

Instructor - Dr. Patrick Bobbie

Kennesaw State University

Marietta, GA

sbostian@students.kennesaw.edu

1 | P a g e

Abstract—Multicore processing offers the advantage of

dividing and sharing computer resources among interconnected

processes, mitigating bottlenecks and minimizing wasted

potential caused by idle computing hardware. Given the

substantial computational demands of such problems,

parallelizing and distributing computing tasks across multiple

cores is often more cost-effective than relying on a single

powerful processor. However, one drawback of multicore

processing lies in the complexity of coordinating computer

resources. The objective of this project is to leverage

parallelization to sort data using an implementation of Merge

Sort. The approach for this project involved establishing a

multithread pool and utilizing the Single Program Multiple

Data (SPMD) model. Comparisons were made with the speedup,

efficiency, and runtimes achieved by increasing the number of

distributed cores across different array sizes against the metrics

of a single-core processor.

Keywords—Threading, Multithreading, Merge sort, Parallel

Computing

INTRODUCTION

This experiment aims to answer the question: “How

significant would the performance increase if the datasets

become exponentially larger for each increase in the number

of threads used for processing?” An attempt to answer this

question by increasing each of the data sets using arrays with

sizes of 10,000, 100,000, 200,000, and 300,000. Each array

was populated with random and distinct integers ranging

from 1 to 999,999. Subsequently, the arrays were transmitted

via a master thread to a thread pool. The thread pool then

executes a merge sort on the divided components on the array

then passes the results to the master thread to reassemble the

array. The results obtained for each scaled array size were

compiled into a table and graphed to analyze the results.

DATA ANALYSIS

From each experiment the time was collected, in

nanoseconds. The timing begins at the creation of the threads

and finishes when the data from each thread finishes merging

creating a complete sorted array. For the experiments the

improvement in performance of increasing the number of

parallel processors versus the serial one, is measured using

the speedup and efficiency metrics. The speedup, the ratio of

the program runtime in serial over the runtime in parallel:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝) =
𝑇𝑆𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛,𝑝)

 [1]

Where n is the size of the input and p is the number of

processors. A perfect speedup score is where the speedup

equals the number of processors, Speedup(n,p) = p, also

known as linear speedup. To determine how each processor

contributed to the speedup parallel efficiency is used. Parallel

efficiency is calculated using the following formula:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑛, 𝑝) =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑛, 𝑝)

𝑝
=

𝑇𝑆𝑒𝑟𝑖𝑎𝑙(𝑛)
𝑝  ∗  𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛,𝑝)

 [1]

Parallel efficiency is given by the speedup over the number

of processors.

RESULTS

As the array size increased the benefits of parallel

processing can be seen in Table 1. When the array is only

10,000 the time it takes to process the array is approximately

half from one to two and from two to four processers. When

eight and sixteen processors are used on an array of 10,000

elements the decrease in time to process the arrays is

hampered by the work to divide the array. The runtime

decreases between about three quarters when the number of

processors is increased between two and four processors.

When the processors are increased to eight or sixteen the

runtime is only decreased by about half.

While an array of 10,000 elements might look like it does

not decrease but that is due to the fact that the 300,000

elements decrease so much compared to the 10,000 elements

array.

Table 1: Runtimes for the randomly generated arrays.

10000 100000 200000 300000
p = 1 591 48221 183908 403233
p = 2 258 14191 57020 109616
p = 4 123 4532 15974 34549
p = 8 123 2278 8335 18565

p = 16 104 1257 4668 10450

Runtime
Number

of
Threads

Array Sizes (# of elements)

Figure 1: A line graph displaying the recorded runtimes for each array

size for a given number of processors.

2 | P a g e

The speedup gained by using parallel processing is

almost equal for each processor regardless of the size of the

array. The speed up almost increase by the same factor has

the number of processors doubles. The speed up is more than

tripled from one processor to two processors and from two to

four processors. The speedup increases of a factor of two

when the number of processors increases from four to eight

and then from eight to sixteen the speedup is only gained by

a factor of 1.75.

 The graph in figure 2 shows that the speedup follows

the same shape as the theoretical big O trajectory as a merge

sort, which is O(nlog2n) [2].

Unlike the speedup the efficiency did increase the same

amount for about all the array sizes. The 10,000-element

array followed the same pattern as the larger arrays but had a

lower increase in efficiency for each increase in the number

of processors used. All the arrays had their greatest

efficiency when four threads were used to sort an array. The

efficiency for each processor begins to decrease after four

threads are used.

The changes in efficiency for each array are visualized

in figure 3. The arrays 100,000 elements and larger the slope

of the graph increases between a factor of 0.6 to 0.8 for one

to eight processors used. When the number of processors is

increased to eight and higher the efficiency is between 88%

to 95% the efficiency of the previous number of processors.

The ten thousand element array has the smallest gain in

efficiency and has the largest decrease in efficiency as the

number of processors increases after four threads. Efficiency

only increases by 15% and then 5% as the number of

processors is doubled from one to four. When the number of

processors is doubled again to eight and sixteen the efficiency

decreases by about 50% for each increase.

CONCLUSION

The primary goal of this research paper was to simulate

parallel processing. Using SPMD task parallelism method of

implementation effectively addressed the issues of multi-

threading including thread synchronization and load

balancing of the data among the concurrently running threads

[1].

For the large arrays (>100,000), it was observed that a

significant speedup occurred when the number of threads

increased. This can be explained due to the cost of overhead

minimal compared to the increased efficiency of the added

cores. The efficiency in these large test cases indicated a

speedup where the speedup is greater than anticipated for an

increased number of cores.

This research showed that there is no optimal number of

cores that will suit all cases. To allow more consistent results

in a dynamic environment of differing input sizes, a threshold

could’ve been implemented to assign the number of cores on

runtime. Overall, it was determined that spending the extra

time to implement parallel processing for a sorting algorithm

yielded significantly better results when the amount of data is

substantial.

REFERENCES

[1] P. Pacheco, “An Introduction to Parallel Computing”, Elsevier Inc.,
2011. ISBN-10: 01237426095

[2] A. Levitin, “The Design and Analysis of Algorithms”, Pearson, 2012.
ISBN-10: 0-13-231681-1

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 3.68 3.4 3.23 3.68
p = 4 11.67 10.64 11.51 11.67
p = 8 21.72 21.17 22.06 21.72

p = 16 38.59 38.36 39.4 38.59

Speedup
Number

of
Threads

Array Sizes (# of elements)

Table 2: Calculated speedup for the randomly generated arrays.

Figure 2: A line graph displaying the calculated speedup for each array

size for a given number of processors.

Table 3: Calculated efficiency for the randomly generated arrays.

10000 100000 200000 300000
p = 1 1 1 1 1
p = 2 1.15 1.7 1.61 1.84
p = 4 1.2 2.66 2.88 2.92
p = 8 0.6 2.65 2.76 2.72

p = 16 0.36 2.4 2.46 2.41

Efficiency
Number

of
Threads

Array Sizes (# of elements)

Figure 3: A line graph displaying the calculated efficiency for each

array size for a given number of processors.

Power Naps to Improve the Performance of Consolidated Learning
Skyler Gipson

Stetson University
Faculty Advisor: Dr. Hala ElAarag

Department of Math and Computer Science

Abstract
In the context of training deep neural networks (DNNs), continual learning methods are a

contender in reducing model inaccuracies that result from a model “forgetting” previous
knowledge learned when updated offline, called catastrophic forgetting. While recent approaches
to improving the performance and memory retention of deep neural networks have been inspired
by cognitive neuroscience and modeling of the human brain, current memory models must be
further developed to increase the efficiency and performance of deep neural networks by limiting
how susceptible they are to catastrophic forgetting. In humans, memory consolidation has been
found to be related to sleep phases, including NREM and REM sleep, dreaming, and napping.
Models utilizing a computational framework based upon wake-sleep phases have outperformed
state-of-the-art models, but further work is needed to fine-tune current approaches to memory
retention, decay, and interference modeling in continual learning methods [1].

While the wake sleep consolidated learning model proposed in Sorrenti et al., 2023 is
novel and successful in improving the performance of continual learning methods, it does not
acknowledge power naps as being an influential aspect of memory consolidation, which occurs
through neocortical-hippocampal interaction during NREM sleep [2, 3]. We ultimately seek to
incorporate offline-brain states, specifically napping, into the deep neural network training
process to reduce catastrophic forgetting, in the context of continual learning.

Methodology
We plan to base our strategy on a 24-hour wake-sleep cycle for a human, modifying the

framework proposed in Sorrenti et al., 2023, shown in Fig. 1. The DNN emulates the neocortex,

Figure 1: DNNWake-Sleep Consolidated Learning
in that connections are updated based on new and previous information, these being task data and
long-term memories from previous tasks, respectively. In the wake phase, a single data stream
for a task mimics an experience, stored as an episodic memory in short-term memory to later be

replayed and consolidated into long-term memory during NREM sleep. During REM sleep, the
model is exposed to a datastream sharing no characteristics with any task data, previous or
current. As memory consolidation occurs, hippocampal-dependence decreases such that the
short-term memory of our wake-sleep framework can effectively be wiped, since its contents
have been transformed into knowledge in the DNN and stored in long-term memory [4]. This
step restores the encoding capacity of the hippocampus for the next wake period. However, the
long-term memory buffer implemented in Sorrenti et al. (2023) is still required, given that while
the DNN receives new information there is potential for catastrophic forgetting as its synaptic
connections are updated. Therefore, the contents of short-term memory must move to long-term
memory, which in turn is passed into the DNN (the neocortex) alongside task data, ensuring that
model parameters are updated considering all existing knowledge as well as the new task
characteristics.

Figure 3: Consolidated Learning Strategy Through Power Nap Periods
Given that the hippocampus has restored encoding capacity after memory consolidation,

various possibilities exist in how power naps could improve model performance, efficiency, and
reduce catastrophic forgetting. Implementing multiple, shorter NREM sleep phases to break up
the wake phase into multiple wake phases–each containing only a portion of data to be learned
for the 24-hour cycle–would allow for fewer “experiences” being held in short-term memory to
be reviewed during the subsequent, post-learning nap. Thus, during a nap fewer task experiences
will be replayed and consolidated during NREM sleep than during a full night’s sleep, given that
the model was exposed to less task data in the preceding wake phase.

Conclusion
We hypothesize that separating the singular wake phase implemented in Sorrenti et al.

(2023) into a wake-nap cycle will improve both model performance and memory storage,
supposing that short-term memory information stored during a nap is learned more deeply, as
synaptic connections are updated based on a smaller amount of information. No method to date
has yet incorporated power naps as a driving factor in updating deep neural networks. As naps
have been proven to play a role in memory and learning, neuroscience-based CL methods would
benefit from an approach incorporating these.

References
1. Sorrenti, Amelia, et al. "Wake-Sleep Consolidated Learning." arXiv preprint

arXiv:2401.08623 (2023).
2. Lau, H., M. A. Tucker, and W. Fishbein. "Daytime napping: Effects on human direct

associative and relational memory." Neurobiology of learning and memory 93.4 (2010): 554-560.
3. Sirota, Anton, et al. "Communication between neocortex and hippocampus during

sleep in rodents." Proceedings of the National Academy of Sciences 100.4 (2003): 2065-2069.
4. Saletin, Jared M., and Matthew P. Walker. "Nocturnal mnemonics: sleep and

hippocampal memory processing." Frontiers in neurology 3 (2012): 59.

ANALYZING STUDENTS’ COLLABORATION PATTERNS VIA A
GRAPH VISUALIZER

Jiabao Xu, Zhijun Zhao
Advisors: Abdussalam Alawini

University of Illinois at Urbana-Champaign

1 Introduction

Collaborative learning has long been a key teach-
ing paradigm in education. Traditionally, edu-
cators have assessed collaborative behaviors us-
ing indirect measures such as test scores or qual-
itative feedback [1,2]. However, the increasing
adoption of computer-based tools in classrooms
offers the opportunity to directly observe and an-
alyze student collaboration patterns in real time
with minimal intervention. In this context, our
study presents GA2GRAPH, a graph-based sys-
tem that enables educators to monitor and analyze
student collaboration through submission data, of-
fering a more immediate and detailed understand-
ing of these interactions.

GA2GRAPH is a full-stack pipeline that con-
verts students’ submission records into a graph
structure. The system consists of a graph-
conversion process, a Neo4j backend to store col-
laboration data, and a frontend interface that al-
lows educators to visualize and analyze collabora-
tion patterns with a range of filtering options. This
integrated system offers an efficient and flexible
way to gain insights into student teamwork and
collaboration dynamics.

This paper presents our findings on student col-
laboration patterns in a university Database Sys-
tems course, analyzed using GA2GRAPH.

2 METHODS

2.1 Data Collection

Student collaboration data was collected and
anonymized from the Database Systems course at
the University of Illinois at Urbana-Champaign
during the Fall 2022 (514 students) and Spring
2023 (470 students) semesters. This upper-level
computer science course is offered to both under-
graduate and graduate students and is taught using
a flipped classroom model. In this model, the in-
structor delivers the course material through pre-

lecture videos, while in-class time is dedicated to
collaborative group work. Students form teams of
up to four members to complete Group Activities
(GA) on the PrairieLearn platform, applying the
knowledge taught in the videos.

The GA content was consistent across both
semesters and covered a broad range of database
topics, including SQL, Database Design, Index-
ing and Storage, Transaction Management, Query
Processing and Optimization, MongoDB, and
Neo4j. Each GA featured a variety of question
types tailored to the specific topic, such as auto-
generated coding exercises, relationship-drawing
tasks, multiple-choice questions, and short-answer
questions.

2.2 Tool Development

Graph Conversion: We initially obtained raw
submission data logs in JSON format from
PrairieLearn, which we then parsed to extract
both the submission content and the corresponding
feedback. After cleaning the data, we represented
each student as a node and mapped consecutive
submission records to a GA question as edges. If a
student submitted two consecutive answers, a self-
directed edge was created. Each node includes
features such as anonymized group names, stu-
dent IDs, and collaboration patterns, while edges
are enriched with properties like submission oc-
currence count and the average time interval be-
tween submissions. The structured data was then
stored in a graph database Neo4j.

GA2GRAPH Interface: The GA2GRAPH in-
terface is connected to the Neo4j database via
Apollo Server/Client, enabling fast demonstration
and advanced filtering of the collaboration graph.
The interface visualizes student collaboration pat-
terns within a single GA for a specified semester.
In this visualization, each node represents a stu-
dent, and edges illustrate the collaboration be-
tween two students. Each subgraph corresponds

Figure 1: The GA graph of semester 2023-GA2
filter panel open

to a student group, with group sizes ranging from
1 to 4.

A filter panel on the left allows users to switch
between semesters and specific GAs. It also pro-
vides advanced filtering options: the ‘Question’
filter enables users to display only nodes and edges
related to a selected question, while the ‘Time In-
terval’ filter shows the average time spent on sub-
missions between pairs of students for the current
GA.

Clicking on a node or edge reveals a details
panel on the right, which displays additional fea-
tures of the selected nodes and edges, along with a
subgraph visualization of the student’s group. This
feature allows for a closer examination of collabo-
ration patterns.

3 Result

Through analysis of the collaboration graphs in
GA2GRAPH, we identified four primary types of
collaboration patterns: Single Member Contribu-
tion, Subteam Strategy, Selective Collaboration,
and Collaborative Individualism.

Single Member Contribution: All the answers
were submitted by a single student in the group,
indicating a strong leadership role, with other
members contributing minimally.

Subteam Strategy: The group was divided into
smaller subteams, where students collaborated pri-
marily within their subteam partners, resulting in
limited cross-team collaboration.

Selective Collaboration: Students actively col-
laborated across multiple questions, engaging with
different group members on various tasks, result-
ing in each student submitting to multiple ques-
tions.

Collaborative Individualism: Students di-
vided the GA into separate questions, with each

Figure 2: Four different collaboration patterns

member focusing primarily on one question,
working independently from the rest of the group.

These patterns were observed consistently
across different GAs. Notably, the same group
often adopted different collaboration patterns de-
pending on the GA question type. For instance,
when applying the GA filter, we noticed that in
GAs with coding questions, groups tended to em-
ploy more diverse collaboration strategies. Con-
versely, in GAs with multiple choice or short
answer questions, where the questions are re-
freshed upon incorrect submissions, students fre-
quently adopted Subteam or Selective Collabora-
tion strategies, collaborating more intensively to
complete the tasks.

4 Conclusion

In this study, GA2GRAPH revealed distinct col-
laboration patterns among students in a Database
Systems course. By visualizing submission data,
educators can gain valuable insights into group dy-
namics and adapt teaching strategies to enhance
collaborative learning across varied activities.

References
Jade McKay and Bhavani Sridharan. 2024. Student

Perceptions of Collaborative Group Work (CGW)
in Higher Education. Studies in Higher Education,
49(2), 221–234.

Bin Sha, Xiaoyu Gu, Qinfang Zhong, Houren Xiong.
2023. Impact of Peer Learning on the Academic
Performance of Civil Engineering Undergraduates:
A Case Study from China. International Journal of
Engineering Education, 39(6), 1417–1433.

“Designing Chatbots for Enhanced Website Navigation”
Ayham Makhamra, amakhamra@mail.roanoke.edu, Faculty Mentor: Dr. Adewale Sekoni, sekoni@roanoke.edu

Roanoke College, 221 College Lane, Salem, VA 24153

Introduction

 In today's digital age, efficient and quick website navigation is essential for users seeking
to extract valuable information from extensive text and content. Chatbots, powered by AI and
Natural Language Processing (NLP), offer a solution to this problem by guiding users through
websites with ease. This research presents a comprehensive framework for developing custom
chatbots based on large language models (LLMs). LLMs, trained on extensive datasets, excel at
understanding and generating human-like text, enabling chatbots to efficiently process user
queries and retrieve relevant information. The study explores three distinct approaches for
designing chatbots to enhance website navigation: rule-based system, fine-turning LLMs, and
retravel-augmented generation (RAG).

Methodology

For this research, three approaches were investigated:

Approach 1: Rule-Based Chatbot.

Using Python’s Chatterbot library, a basic
rule chatbot was built. Rule-based systems
use predefined rules (categorized corpus) to
respond to user queries and it performs well
for straightforward question-and-answer
(Q&A). However, the chatbot is limited by
its ability to handle complex queries or
learn from interactions. This approach can
be suited well for static and repetitive tasks,
but not dynamic user input.

Approach 2: Fine-Tuning Large Language Models
(LLMs).

This approach utilizes the “Gemma-2b-it model” along with
HuggingFace APIs to fine-tune pre-existing LLM. This
process involved training the model on specific datasets
(small coding datasets in our case). This method allows the
chatbot to generate contextually accurate and domain-
specific responses resulting in notable difference compared
to the base model, showcasing fine-tuning success. This
approach is limited in cases where real-time information is
required, as the models are only as current as their training
data.

Approach 3: Retrieval-Augmented
Generation (RAG)

RAG models, a hybrid solution, combines
LLMs with external knowledge sources.
RAG trains models by retrieving data
from external sources in real-time. This
hybrid approach enhances accuracy, and
relevance of chatbot responses, making it
ideal for integrating real-time or up-to-
date information into navigation. The
model offers highly adaptable and
dynamic solution for the website
navigation.

Results

The performance of the three chatbot systems was evaluated depending on their ability to
handle website navigation tasks:

• Rule-Based System: This chatbot demonstrated limited functionality and adaptability.
While it was efficient for handling predefined tasks, it was unable to adapt to user input
beyond its trained rules. Its functionality can be useful for basic navigation but lacks
contextuality.

• Fine-Tuned LLM (Gemma-2b-it): This model showed a significant improvement in
domain-specific questions and the ability to deliver contextually accurate responses. The
fine-tuning process enabled the chatbot to better understand the nuances of specific
queries, but it was limited while addressing real-time information needs.

• RAG Model: The RAG model is expected to dynamically improve website navigation by
integrating real-time data retrieval with generative models. This represents a promising
solution for large-scale, data-intensive websites that require static and up-to-date
information integration.

Future Work

Continue the development of the RAG model for integration into large-scale websites
such as the college's website.

Acknowledgements

This research was supported by the MCSP Department. Special thanks to Dr. Adewale
Sekoni for his guidance and feedback throughout the project.

Figure 3. Retrieval-Augmented Generation
Chatbot.

References

[1] Ł. Kaiser, E. Shyu, Y. B. Mourri, "Natural Language Processing
Specialization," Coursera, https://www.coursera.org/specializations/natural-language-
processing, Accessed on: April 12, 2024.

[2] Pokhrel, Sangita & Ganesan, Swathi & Akther, Tasnim & Mapa Senavige,
Lakmali Shashika Karunarathne. (2024). Building Customized Chatbots for Document
Summarization and Question Answering using Large Language Models using a
Framework with OpenAI, Lang chain, and Streamlit. Journal of Information Technology
and Digital World. 6. 70-86. 10.36548/jitdw.2024.1.006.

[3] Ebsen, Ty & Segall, Richard & Hyacinthe, Aboudja & Berleant, Daniel.
(2024). A Customer Service Chatbot Using Python, Machine Learning, and Artificial
Intelligence. Journal of Systemics, Cybernetics and Informatics. 22. 38-46.
10.54808/JSCI.22.03.38.

Imbalanced Data Classification Using Supervised Variational Autoencoders

Clayton McLamb

Elon University

Faculty Advisor: Dr. Scott Spurlock

Introduction

This project focuses on the development and utilization of deep learning models to increase

machine learning (ML) fairness, specifically applied to tabular data. Increasingly, ML models

play a crucial role in decision making, from loan approvals to medical diagnoses.

However, sampling and representation bias can lead to datasets with class imbalance, where

there are significantly fewer examples of minority classes (e.g., disease is present) compared to

majority classes (disease is not present). Models trained using this data often develop an implicit

bias towards the majority class, failing to accurately predict the minority class [1].

Current algorithms attempt to re-balance the data, either by removing majority examples

(undersampling) or by generating new minority examples (oversampling). Although these

algorithms can decrease the bias within these models, they often lead to overfitting or generate

examples that fail to add any "new" information. This research investigates the capabilities of

deep learning to generate new examples, improve model fairness and performance, and match

the complex structure of the data.

Methods

One type of deep learning model, a variational autoencoder (VAE), has proven generative

capabilities. VAE's consist of two parts, an encoder and a decoder [2]. The encoder learns to

deconstruct the data into a lower-dimensional and non-linear space, often referred to as the latent

space. The latent space of a variational autoencoder captures the key or salient features of the

data, as principal component analysis (PCA) does in a linear space. The decoder uses the

compressed version of the data within the latent space for reconstruction.

This research investigates an alternative, supervised variational autoencoder (sVAE). Attached to

the hidden layer of the decoder, a classifier predicts what class an observation may belong to.

Compared to a VAE, which takes into account purely reconstruction and KL-divergence, the

sVAE is capable of identifying key features that separate the classes. Figure 1 displays the

architecture of the sVAE.

Figure 1. Architecture of Supervised VAE

When trained on imbalanced data, the sVAE will learn how to generate and classify both

minority and majority data. The latent representation within the sVAE will capture features that

both minimize reconstruction error, but also identify features that separate class labels. Using this

latent representation, sampling will occur to reconstruct new minority examples. The sampling

technique investigated here will be compared across a variety of imbalanced datasets and

sampling techniques, such as SMOTE, oversampling, undersampling, etc.

Results

Currently, the sVAE has been evaluated on two key features, its reconstruction capability and

latent representations. While traditional VAE's exclusively emphasize reconstruction error and

KL-divergence, sVAE's also take into account classification. The VAE’s unawareness of class

label results in heavy emphasis on reconstruction capability and a latent representation that does

not intentionally separate classes. The reconstruction capabilities of the VAE and sVAE were

tested on the popular imbalanced dataset ecoli. Figure 2a displays the reconstruction data using

the principal components of the original data. Both models learn to reproduce the original

distribution of the input data.

The second capability of the sVAE examined is the latent representation of the data. In order to

generate quality minority examples, the minority class must have a defined space within the

latent representation to sample from. Figure 2b displays the latent representation of the ecoli

dataset for both the VAE and sVAE. Compared to the VAE, the sVAE latent representation for

minority class data was more defined. By comparing the latent representations across many

datasets, we can measure the success of the sVAE. The project and findings will be presented at

the conference.

Figure 2a. Comparing Reconstruction Figure 2b. Comparing Latent Representations

References

[1] Jack J Amend and Scott Spurlock. 2021. Improving machine learning fairness with sampling

___and adversarial learning. J. Comput. Sci. Coll. 36, 5 (January 2021), 14–23.

[2] Kingma, D.P. 2013. Auto-encoding variational Bayes. arXiv preprint. arXiv:1312.6114.

Illuminating Vulnerabilities - The Dark Side of Smart Bulbs

Jiayong Zheng, jzhen3561@ung.edu

Bryson Payne, bpayne@ung.edu

Department of Computer Science, Mike Cottrell College of Business

University of North Georgia, Dahlonega, GA

ABSTRACT

Smart devices, like smart bulbs, are devices that have the capability for users to remotely control
their behavior and functionality. The ability for users to remotely control these devices also
brings potential vulnerabilities that could sabotage an entire network. This research focuses on
penetration testing of IoT devices to see how vulnerable these devices are to malicious
contenders. IoT devices are daily-use appliances and tools that can connect to the internet. This
includes the coffeemaker in some of our kitchens, garage door openers, even smart light bulbs
that some of us use to remotely illuminate the room through our phone. Unlike desktop and
laptop computers, these IoT devices rarely have any physical or logical intrusion detection or
intrusion prevention mechanisms in them. Due to this, IoT devices are more prone to attacks
compared to other wireless-compatible devices.

In this research project, the main goals to accomplish include intruding into a smart bulb,
establishing remote connections with the bulb, and manipulating the smart bulb’s behavior
through scripting. The process starts with using Ubertooth One to capture the Bluetooth signal
from the smart bulb. The ultimate command and control phase of the project is accomplished
using scripts within a Kali Linux VM. Besides exploiting the vulnerabilities in the smart bulb,
educating users on how to prevent such attacks from happening to their IoT devices is another
focal point in this study. Defending IoT devices is feasible, and this paper concludes with
recommendations for defense-in-depth strategies users can implement to protect their devices
and home network.

PORTABLE DOOMSDAY DEVICES?
FLIPPER ZERO VS. HACK RF IN MODERN HACKING

Ethan Lanio, Bryson Payne

Department of Computer Science and Information Systems

University of North Georgia
82 College Circle, Dahlonega, GA 30597

ellani6371@ung.edu, bryson.payne@ung.edu

Abstract

In the last decade, technical developments have made normal, commonplace devices into
extremely potent devices, which is especially true within the hacking community. A new
generation of portable hacking tools, like the HackRF One and Flipper Zero, have been created as
our lives become more interconnected through smart gadgets and wireless networks. These tools
let anyone to take advantage of weaknesses in a wide range of products, including car key fobs,
garage doors, and much more. These small, easy-to-use gadgets are ushering in a new era where
everyone and anyone can become a wireless hacker with the correct tools, as advanced hacking
techniques become more accessible than before with a press of a few buttons.

In the field of portable wireless and hardware hacking, Flipper Zero and HackRF One are the
most popular instruments with distinct features for penetration testers, security researchers, and
enthusiasts alike. Designed for experimenting and hacking with RFID, NFC, sub-GHz, infrared,
and GPIO pins, the Flipper Zero is a multipurpose tool that is very adaptable. Both novice and
expert users will find it easy to use due to its small size and simple UI. As opposed to this, the
HackRF One is a Software Defined Radio (SDR) that can both receive and transmit radio signals
to which it can perform more sophisticated wireless assaults, such as spoofing and intercepting
GSM, Bluetooth, Wi-Fi, and GPS communication protocols. This research contrasts these gadgets,
emphasizing their technological variations and how they manage in today’s hacking environment
through testing both in performing multiple different attacks such as Side Channel attacks,
BadUSB attacks, and Wi-Fi Deauth Attacks to list a few.

The emergence of hardware-based hacking tools has become a major worry for security experts
and malicious actors alike in the quickly changing field of cybersecurity. The Flipper Zero and the
HackRF are two gadgets that are receiving a lot of interest as of late. They are both strong and
diverse platforms that let users learn about and engage in a wide range of wireless communication
protocols. Despite being created for study and ethical hacking, these tools have grown in popularity
among security experts, enthusiasts, and maybe even criminals. The security of these systems is
critical as more businesses move toward networked systems and depend on wireless
communication for daily operations. The Flipper Zero and HackRF are two separate yet
complimentary technologies used in both offensive and defensive cybersecurity techniques.

The Flipper Zero is a portable, user-friendly gadget that lets users engage with many radio
frequency (RF) protocols. It was created as a multi-tool for pen-testers and hackers alike. With its
ability to read, write, and emulate protocols such as NFC, RFID, infrared, and sub-GHz
communications, it's a great tool for beginners looking to get started with hardware hacking. In
contrast, the HackRF is a more sophisticated Software-Defined Radio (SDR) that allows users to
send and receive signals across a broad frequency range. Although the HackRF is more
complicated to operate and requires more software configuration, cybersecurity researchers prefer
it because of its greater customizability and wider range.

The Flipper Zero is frequently commended for its small size, simplicity of usage, and plenty of
pre-configured features, which make it ideal for novices. Its lack of sophisticated customization
possibilities and very short signal range, however, are its limitations. On the other hand,
sophisticated users who need more control over signal processing and a wider frequency range
might benefit from a more flexible platform offered by the HackRF. Although it offers an
unmatched amount of control, its open-source nature and compatibility with potent SDR software
suites like GNU Radio and SDR also come with a more challenging learning curve and the
increased potential to harm as using the devices options with no consideration of its potential could
lead to issues with law enforcement. In addition to this, the Hack Rf being used in this project is
the Hack RF with portapack which gives it its on-the-go or portable nature versus the Hack RF
One which needs to be connected via a computer.

This research projects examines the strengths and weaknesses of the Flipper Zero and the
HackRF in relation to each other and contemporary hacking in general, as well as the ways in
which each tool might be applied in different offensive contexts. We want to determine their
efficacy in real-world applications by carrying out a number of useful tests or malicious attacks
that can be done by both devices. More specifically, we will assess their usability and versatility
in various hacking scenarios in addition to looking at how well they perform in popular assaults
including side-channel attacks, signal interception, wireless protocol manipulation, etc. The results
of this study will add to the growing body of knowledge on portable hardware hacking in the
context of modern security, providing an attackers, either malicious or ethical, perspective on how
these devices might be studied and used in practical settings.

Manipulating the CAN | A Multi-Vehicle
Car-Hacking Comparison

Poster Session

Zachary Simmons

Dr. Bryson Payne
Department of Computer Science and Information Systems

University of North Georgia
Dahlonega, GA 30533

zmsimm8243@ung.edu

This research involves capturing and replaying packets that are
going over different vehicles' Controller Area Network(CAN) systems
and analyzing the differences between vehicles, the primary goal is to
turn on certain features in the car like the blinkers from an external
device and explore the real-world implications of replay attacks. A
CAN injection, replaying the packets that are known to change some
state within the car, is the attack used on the Toyota Rav4 to start the
engine without the key from the headlights’ connection to the CAN.

As seen by the Rav4 vulnerability, more attack vectors have
emerged as vehicles increasingly become computers on wheels.
While automotive manufacturers are constantly working on securing
the vulnerabilities associated with vehicles' computer systems,
keeping up with new attacks is a constant challenge for
manufacturers. Since the advent of the wireless key in 1982, replay
attacks have been an issue in the automotive industry, while rolling
codes have mostly fixed this issue another attack, the relay attack,
has emerged with the creation of the completely keyless vehicle keys.
This underscores that as vehicle technology becomes more
innovative so do the attacks that plague automotive manufacturers
and customers.

Residential Investigation: Uncovering the
Threats in Smart Homes Using Network

Forensics

Edwin Denmark, Bryson Payne

University of North Georgia

ABSTRACT
Over the last decade, the use of Internet of Things (IoT) devices in

residential areas has increased. Although IoT devices provide the general
consumer with great convenience, IoT devices usually have low levels of security,
leaving homes vulnerable to cyberattacks. In a typical environment, network
forensic techniques are effective in detecting threats. However, these techniques
may struggle to identify threats in a common IoT household. This research aims
to evaluate how well current network forensic techniques can detect threats in
residential IoT environments. By identifying the strengths and weaknesses of
these tools, this project will help to enhance the security and reliability of IoT
devices.

In order to test some forensic techniques, this research simulated
malicious network activities by using a free packet manipulation software called
Scapy. In order to create a controlled test environment that can replicate the
everyday IoT devices people can find inside their homes, this study makes use of
items such as smart bulbs, security cameras, and a smart TV. Wireshark and Zeek
are some free open-source tools that are used within this study. These tools are
used to capture network packets and investigate network traffic. The results will
show the strengths of current forensic software in a typical household. By using
these tools to effectively detect threats, the average consumer can find ways to
minimize any attacks that utilize their devices.

Automated Conversion of Fill-in-the-blank and Short-answer Questions to Multiple-

choice Questions
Danielle Mathieu (dmathieu@ggc.edu), Dylan Long (dlong12@ggc.edu)

Advisor: Dr. Wei Jin (wjin@ggc.edu)

Department of Information Technology, Georgia Gwinnett College, Lawrenceville, GA

1 Introduction

Multiple-choice questions (MCQ) can be automatically graded and due to this convenience, they are the most

frequently used format for assessments. One drawback is that there are normally a small number of choices, most

often four, for each question, which could make it easier for students to guess the correct answer. Ideally, the

distractor choices should capture student misconceptions. Very often the choices are made by teachers without going

through a rigorous process as in [1]. Teachers might fail to capture many student misconceptions.

The fill-in-the-blank or short-answer (FIB/SA) types of questions do not reveal any hints for students and are

considered better ways to assess student learning than the multiple-choice type of questions. However, although

correct answers can be specified for such questions in many course management systems, they often require manual

grading due to variations in how students enter their answers. This makes it impractical to rely on these types of

questions for regular assessment.

This project addresses these challenges by developing a software tool that can be used to convert an existing

FIB/SA question into a corresponding MCQ using the answers students have given in previous semesters as the

choices. The answers should have been graded carefully by instructors in order for this approach to work well. This

will not only increase the number of choices for a MCQ making it more difficult for students to guess the correct

answer, but also improve the assessment accuracy, since the choices are actual answers from students capturing their

misconceptions.

2 Related Work

Creating effective MCQs is a vital part of assessing student learning. According to Caceffo et al. [1], developing a

Concept Inventory (CI) involves carefully designing each question to address misconceptions that students

commonly have. This process begins by analyzing student responses to open-ended questions to identify common

mistakes and misunderstandings. These misconceptions are then used to create distractors — incorrect answer

choices that reflect these misunderstandings. By including distractors based on actual student responses, the quality

of MCQs is enhanced, as they mirror the thought processes of previous students. This approach helps create

questions that challenge students' critical thinking and reduce the likelihood of guessing the correct answer.

Abreu et al. explore the effectiveness of implementing MCQs in programming education [2]. Their study found

that MCQs can increase student engagement with the material while also enabling faculty to accurately assess

students’ understanding of programming concepts. Data was collected through performance tests and surveys, where

students were asked to compare the use of coding questions versus MCQs. The study highlighted that to increase

student engagement with difficult material, MCQs were necessary due to their immediate feedback and the ability

to cover a broader range of topics.

3 Our Approach

A CSV file containing carefully graded anonymized student answers for a collection of FIB/SA questions was

provided for this project. We developed a software tool that does the following: (1) Extracts questions from the

given CSV file. (2) For each question, identify all the student answers and the points received by each answer. The

collection of answers for a question will be choices for the generated corresponding MCQ. As a result, this tool

allows for partial credit if professors have provided partial credit when grading previous student answers.

This ensures that the generated MCQs are reflective of real student responses and thus capture real student

misconceptions, enhancing the relevance and effectiveness of the assessments.

 Our program uses hash maps to store data as they allow for efficient organization and retrieval of data, making

it easy to manage and access large sets of question-answer pairs quickly. For an answer that did not score

100% on a question, the answer and its score will be entered into a

hash map called wrongAnswers. The keys for this map represent every

unique FIB/SA question in the CSV file, while the value for each key

is a list that holds the wrong answers and their scores. Correct answers

are added to another hash map called correctAnswersMap. The keys

for this map are also every unique FIB/SA question in the CSV file,

with the value for each key being a list of correct student answers.

Note that there might be multiple ways to get 100% for a question.

The information captured by the two hash maps will be written to a

CSV file in a proper format for multiple-choice questions that can be

then uploaded directly into a D2L question bank or as a D2L quiz,

where D2L is a course management system currently in use at our

college. Note that the answer choices are shuffled to randomize the

order. To ensure there are at least three wrong answers for every

question, wrong answers such as “None of the above” and “All of the

above” could be added. Figure 1 shows what an automatically

generated MCQ looks like.

Figure 1: An Automatically Generated MCQ

4 Result and Conclusion

This tool was used successfully at the start of Fall 2024 for the efficient setup and grading of a Java preassessment

for multiple sections of the Programming Fundamentals course. First, a professor exports student answers from a

quiz into a CSV file. Multiple CSV files for the same quiz from different semesters or sections can be combined

into one CSV file as the input to the program. The program will extract all FIB/SA question-answers and produce

an output CSV file that contains the generated MCQs, which can be uploaded directly to D2L. Without this tool, it

would not have been possible.

This project addresses the significant problem of manually grading FIB/SA questions, which is time-consuming

and inefficient for professors. By developing a tool that automates the conversion of FIB/SA answers to MCQs, we

provide a practical solution to streamline the assessment process. The tool ensures that answer choices are real

answers previously provided by students, challenging new students to read and understand the questions more

carefully. This not only saves valuable time for educators but also ensures consistency and fairness in grading, while

reducing the likelihood of cheating. This automated solution significantly enhances the efficiency and effectiveness

of creating and grading quizzes and serves as a valuable aid for professors.

REFERENCES

[1] Caceffo, R., Wolfman, S., Booth, K. S., & Azevedo, R. (2016, February). Developing a computer science concept inventory for

introductory programming. In Proceedings of the 47th ACM Technical Symposium on Computing Science Education (pp. 364-369). DOI:

https://doi.org/10.1145/2839509.2844559
[2] Abreu, P. H., Silva, D. C., & Gomes, A. (2018). Multiple-choice questions in programming courses: Can we use them and are students

motivated by them?. ACM Transactions on Computing Education (TOCE), 19(1), 1-16. DOI: https://doi.org/10.1145/3243137

https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/3243137
https://doi.org/10.1145/3243137
https://doi.org/10.1145/3243137

Generation of Equivalent Questions through Templates for Programming Concepts

Sean Nolan (snolan3@ggc.edu)

Advisor: Dr. Wei Jin (wjin@ggc.edu)

Department of Information Technology, Georgia Gwinnett College, Lawrenceville, GA

1 Introduction

The dissemination of assessment questions and answers over the internet (e.g. Chegg and Brainly) allows for

students to receive credit for correct responses without properly testing their ability. One way to mitigate this

issue is by creating different questions each semester to invalidate leaked assessments. However, manually

creating new questions every semester becomes tedious and time-consuming, making it impractical for many

professors. We present a tool that uses templates to automatically generate different versions of an assessment.

This tool relieves the tedium of manually editing questions, making it effortless to create unique quizzes

whenever necessary.

2 Background

Previous studies have been conducted to determine the impact of automatically generated unique quizzes on

learning and teaching. Kumar developed online tutors for C++/Java programming [1]. The system uses templates

to generate varied problems for the same concept. The main purpose of the tool is for tutoring. In addition to

generating unique problems, the tutors grade the students’ responses step by step and guide students to the final

answer. The tutors can be adopted as an assessment tool. Currently, however, all the templates are part of the

system and instructors cannot create their own questions.

Jin, Guo, et. al. experimented with template-based and automatically generated Chemistry quizzes [2]. Their

project addressed a challenge associated with the mastery-based learning approach, which allows students to

learn/relearn a concept until a certain level of mastery is achieved, measured by passing an exam for that concept.

Since a student may take the exam multiple times, a different version of the exam will need to be generated for

each attempt. Without a tool, instructors have to manually modify an existing quiz by changing numbers and

units into an equivalent but different quiz, which is labor intensive and error prone. Data collected from a

semester showed that, with the tool, the estimated total time saving per student is 354.8 minutes, based on roughly

10-minute time needed to manually generate each quiz variant. The saving could be enormous for large classes.

3 Our Template-based Approach

This project is based on the template-based approach as described above [2]. However, additional challenges

needed to be addressed. Programming concept assessments often include code segments in question descriptions.

The correct answer for such a question may not be captured by a formula. Our tool allows a code segment to be

represented by a template. In addition, the tool can also generate variants for multiple-choice questions.

3.1 Question Template

To use this tool, a teacher will need to convert each quiz question into a template. A template consists of the

specification of a set of template variables, the question itself, which has the template variables embedded in the

question description, and answer description (see Figure 1). The tool can then generate random values for the

template variables and replace variables’ with these values in the question description and answers, resulting in a

different version of the question.

A template variable can be of any data type. The specification of such a variable includes data type and how a

value for this variable is generated. For a variable whose value is randomly generated, the range for the values

must be specified. If a variable is of the string or the character type, the range is specified as a set of values that

the tool can randomly pick from.

In addition, the solution type can be specified (e.g., the red box in Figure 1) and how solution is generated

(e.g., the blue box in Figure 1). By default, the solution is determined by evaluating a mathematical expression.

The second approach to generate the solution is by compiling and executing a given code segment. For multiple-

choice questions, the solution generation method is also “compile & execute” as the choices will be printed by an

embedded code. This allows for more control over the output of the program.

Figure 1: (a) An Example Template and (b) a Generated Question from the Template

3.2 Quiz and the Tool

A quiz is a text file that contains multiple questions, each of which is represented as a template described above.

The tool parses a given quiz template file and processes each question template. For each question, it generates a

random value for each template variable, embeds these generated values in the question text, and determines

answers based on these values. Each execution of the tool will generate a unique quiz and outputs two files: One

is a Word document to allow for reading of the generated assessment in a simple format, and the other is a CSV

file for uploading to various online course management systems as a quiz or into the question bank.

4 Result and Conclusion

Without the tool, currently many quizzes/exams are either reused across semesters or have to be manually

modified. To use this tool, a teacher will have to spend some initial time to set up a quiz template. After that

initial time investment, each variant of a quiz can be instantly generated. Assuming that a course with 10

quizzes/exams a semester and 20 minutes time to modify each quiz into an equivalent variant, the time saved per

semester per section is 10 * 20 = 200 minutes. For a course with multiple sections (e.g. 10 for the Programming

Fundamentals course), the accumulated saving time could be substantial.

The development of a template-based, automated question generation tool offers a practical solution to the

challenge of assessment integrity in educational settings. This tool saves valuable time for educators by

automating the creation of exam variations and prevents cheating by rendering leaked assessments ineffective.

With flexibility in terms of question types, variable replacements, and solution generation methods, it is suitable

for use within a range of subjects and assessment styles. Therefore, this tool is a key milestone in the automation

of assessment generation, given that institutions are in continuous pursuit of effective and dependable means of

rating student learning.

REFERENCES

[1] Kumar, A. N. (2005, June). Online tutors for C++/Java programming. In Proceedings of the 10th annual SIGCSE conference on

Innovation and technology in computer science education (pp. 387-387). DOI: https://doi.org/10.1145/1067445.1067589
[2] Jin, W., Guo, Y., Marshall, D., & Brown, G. (2020, October). An Interdisciplinary Collaboration Enhances Education in Both

Disciplines and Generates Future Opportunities. In Proceedings of the 21st Annual Conference on Information Technology

Education (pp. 149-155). DOI: https://doi.org/10.1145/3368308.3415385

Project LegoLogic: Using Lego Spike Prime to Teach Essential Coding

Concepts
Juan Guevara, Miguel Leon, Jenna Vincent, Dr. Cengiz Gunay, Dr. Cindy Robertson
Department of Information Technology, School of Science and Technology, Georgia Gwinnett College

Introduction
Technology has become an integral part of everyday life, and understanding its principles is essential in

today’s world. However, introducing complex topics like programming to young learners can be

challenging. By using accessible and interactive tools, such as the LEGO Spike Prime system, we can make

learning coding both engaging and fun for students.

This project introduces essential coding concepts through a hands-on workshop in which participants

build and program models. Through this playful approach, we hypothesize that students will learn

fundamental programming skills like loops, conditionals, and variables, gaining a solid foundation in

coding and robotics. We will study whether we reach our target by surveying participants’ knowledge in

these workshops.

Study Target
This study is geared toward students in grades 6 and above who have minimal programming experience.

This project aims to engage young students and spark their interest in technology at an early age. By

teaching essential programming concepts through the interactive and playful use of LEGO Spike, the

study aims to make learning coding both simple and enjoyable. The project also seeks to encourage

collaboration among the participants with a fun, hands-on activity where students can create and play a

game while gaining foundational coding knowledge.

Description of TAP program
The Technology Ambassadors Program (TAP) was created to spark an interest in information technology

within the community using fun and interactive technology workshops [1]. TAP aims to engage a broad

audience by developing projects that are simple enough to be understood by a wide range of

participants, including both those with prior knowledge of information technology and complete

beginners. This approach ensures that the program is accessible and appealing to people with varying

levels of experience.

Methods
The project utilizes the LEGO Spike set [3] along with the LEGO Spike Word Block coding platform [2]. The

LEGO Spike set includes various components such as motors and color sensors, which are essential for

building interactive and dynamic models. The motors allow for movement and mechanical functionality,

while the color sensors enable the detection of different colors, adding an element of responsiveness to

the project. The LEGO Spike Word Block coding platform provides an intuitive drag-and-drop block

coding interface, making it easy for beginners to learn and apply coding concepts without needing prior

programming experience.

Through this project, the aim is to teach essential coding concepts, including loops, variables, and

conditionals by constructing a catapult-like contraption that can be aimed to throw projectiles [4,5].

Participants will learn to create simple loops, such as "repeat" or "while" loops, to control motors and

automate repetitive tasks. Additionally, participants will grasp the concept of conditionals, like "if-else"

statements, using them to make decisions within their programs. This will involve programming the

machine to make choices based on sensor input or predefined conditions,

such as turning the catapult to aim it based on light sensor input. And

finally, participants will learn how to create and use variables to store and

modify data, including counters or sensor readings, throughout their

program.

These fundamental concepts are the building blocks of programming, and

by integrating them into a hands-on, interactive experience, the project

makes learning engaging and accessible to students. We will conduct pre-

and post-surveys to test the participants’ knowledge gained on these

topics in the workshop to test whether our method has been effective.

Figure 1. Catapult object being constructed with the LEGO Spike set.

Results
By the end of this LEGO Spike program lesson, participants will gain a foundational understanding of key

programming concepts, including loops, conditionals, and variables, through the block coding provided

by the LEGO Spike Prime system. The results of this study will be presented in detail in our accompanying

poster, highlighting the learning outcomes and participant engagement throughout the lesson.

References
1. Dekhane, S., Xu, X., Napier, N., Barakat, R., Gunay, C., & Nagel, K. (2018). Technology focused

service-learning course to increase confidence and persistence in computing. Journal of
Computing Sciences in Colleges, 34(2), 147-153.
https://dl.acm.org/doi/10.5555/3282588.3282609

2. Körei, A., & Szilágyi, S. (2022). From Scratch to Python : Lego Robots AS motivational tools for
coding. Multidiszciplináris Tudományok, 12(3), 247–255.
https://doi.org/10.35925/j.multi.2022.3.22

3. Lego Education Spike, spike.legoeducation.com/prime/models/. Accessed 23 Sept. 2024.
4. Spike Prime “Automatic Lego Catapult”. Joy coding :네이버블로그. (n.d.).

https://blog.naver.com/subeen40/223234159558
5. YouTube. (n.d.). [Tutorial] The Ultimate LEGO Cannon Tutorial: Build, Aim, Fire!. YouTube.

https://www.youtube.com/watch?v=2pB8OkP1ReM

Acknowledgments
This project has been partially funded by the National Science Foundation grant #2315804. We would

like to express our sincere gratitude to all those who contributed to the success of this project. We also

extend our appreciation to the GGC Technology Ambassadors Program (TAP) faculty and students and

the School of Science and Technology for providing the resources and platform for this project.

https://dl.acm.org/doi/10.5555/3282588.3282609
https://doi.org/10.35925/j.multi.2022.3.22
https://www.youtube.com/watch?v=2pB8OkP1ReM

Building A Pokémon Chatbot Using Retrieval Augmented Generation

Jonathan Tran, Dr. Cengiz Gunay

Department of Information Technology, School of Science and Technology, Georgia Gwinnett College

Introduction

 Artificial Intelligence (AI) is a field of study that allows computers to perform complex and

advanced functions based on the user’s preference. The first few recorded instances of AI came out in

the 1950s, when Alan Turing invented the Turing test for machine intelligence as it was popularized in

the movie (The Imitation Game [1]), theorizing the general idea of whether machines can think like

humans. Recent advances in AI came close to this vision with Large Language Models (LLM) [2]. LLMs are

a subset of AI that primarily involves recognizing and generating text for that specific task. They are

composed of essentially a set of neural networks that generalizes data and matches the meaning of that

specific data to its own pre-trained data. In other words, LLMs are models that can understand meanings

and relationships of written texts. In this project, we are applying LLMs to create a chatbot that responds

to queries about Pokémon.

At the time of writing, Pokémon is roughly 26 years old, having existed within 2 generations, which are

Millennials and Gen Zs. There is a high probability that if you were one of these generations, you know of

Pokémon and have seen some form of its media. Being wildly popular, Pokémon media types produced

include video games, trading card games, or animated cartoons, resulting in massive amounts of media

on it ranging from multiple shows and video game iterations to its trading card counterpart. Despite the

large fan base, information pertaining to anything Pokémon related is scattered across libraries for

Pokémon that exist on the internet. Furthermore, most of these resources are incredibly hard to

understand as they contain too many small details, which makes it difficult for the average person to

navigate them. We propose that a chatbot that does the searching would make this process much more

efficient and save people a massive amount of time.

We will train the chatbot with Pokémon data, which will include all generations, 1 through 9.

Each generation is marked by the iteration of its corresponding game. For example, generation 1 refers

to the first 3 Pokémon games, which are Pokémon Red, Blue, and Yellow. Generation 2 then refers to the

set of games following them. This is the typical pattern when it comes to naming Pokémon generations.

In the total of nine generations, there are 1026 separate Pokémon data entries. Each entry will have its

own stats, location of the entry, type weaknesses and strengths, etc. We will feed this data in natural

language to the AI model by using the following chatbot implementation.

Methods

 To create a working chatbot that is well versed in Pokémon data, we used a web API, Poke Data

[3], that contains all necessary data. The code used various Python libraries to query and display the

chatbot. Some of these libraries include Streamlit [4], Ollama [5], Langchain [6], and others. Streamlit

[4]is used because it allows the quick creation of a web-based app, Langchain [6] is used to connect large

language models into applications, and Ollama [5] is used as the main LLM in which to train our data.

Specifically, the chatbot will be running Facebook’s llama 3.1 model [7].

Integrating the Pokémon data into a

general-purpose LLM can be achieved by

using the Retrieval Augmented Generation

(RAG) [8]. This works by feeding into the

LLM pre-trained data as context, which

will then be vectorized, or split apart into

smaller chunks, and stored. After the data

is vectorized, the user will send a query,

and the model will find the closest match

from the query to the data using text

classification. Figure shows the workflow

of RAG (Refer to [1] for image source).

Expected Results

 This project will be showcased at a local symposium where users can view and potentially play

with the chatbot. They could help test any overlooked errors that got past initial testing (e.g. query is too

specific so the chatbot is unable to give an accurate response). The chatbot's creation is completed but

will require minor changes to the code for the updated data. We will present our results on our poster.

References

[1] A. M. Turing, “I.-Computing machinery and intelligence,” OUP Academic,
https://academic.oup.com/mind/article/LIX/236/433/986238?login=false#164226500 (accessed
Sep. 29, 2024).

[2] “The history, timeline, and future of llms,” Toloka, https://toloka.ai/blog/history-of-llms/ (accessed
Oct. 5, 2024).

[3] “Documentation,” PokéAPI, https://pokeapi.co/docs/v2 (accessed Sep. 29, 2024).

[4] “API reference - streamlit docs,” API Reference - Streamlit Docs,
https://docs.streamlit.io/develop/api-reference (accessed Sep. 29, 2024).

[5] Ollama, “Ollama/docs/api.md at main · ollama/ollama,” GitHub,
https://github.com/ollama/ollama/blob/main/docs/api.md (accessed Sep. 29, 2024).

[6] “Introduction,” LangChain, https://python.langchain.com/v0.2/docs/introduction/ (accessed
Sep. 29, 2024).

[7] Meta-Llama, “Meta-llama/llama-models: Utilities intended for use with Llama models.,” GitHub,
https://github.com/meta-llama/llama-models (accessed Sep. 29, 2024).

[8] “Rag,” RAG, https://huggingface.co/docs/transformers/en/model_doc/rag (accessed Oct. 5, 2024).

[9] What is Rag? - retrieval-augmented generation AI explained - AWS, https://aws.amazon.com/what-
is/retrieval-augmented-generation/ (accessed Sep. 30, 2024).

https://academic.oup.com/mind/article/LIX/236/433/986238?login=false#164226500
https://toloka.ai/blog/history-of-llms/
https://pokeapi.co/docs/v2
https://docs.streamlit.io/develop/api-reference
https://github.com/ollama/ollama/blob/main/docs/api.md
https://python.langchain.com/v0.2/docs/introduction/
https://github.com/meta-llama/llama-models
https://huggingface.co/docs/transformers/en/model_doc/rag
https://aws.amazon.com/what-is/retrieval-augmented-generation/
https://aws.amazon.com/what-is/retrieval-augmented-generation/

A Structural Analysis of Largest Independent Sets in a Family of

Circulant Graphs
Extended Abstract

Moazzam Hayat

September 2024

1. Introduction and Background

Our goal is to prove an upper bound on α(G), the independence number, i.e., the size of a largest
independent set, for each graph G in a particular infinite family of circulant graphs. For general
graphs, the problem of determining the independence number is NP-complete [GR01]. The problem
has not been solved for circulant graphs either [Sto14]. As discussed below, in an optimal assignment
of frequencies to a set of wireless devices, our efforts will place an upper bound on the minimum
separation of frequencies assigned to devices within close proximity of each other.

The Frequency Assignment Problem (FAP) involves assigning frequencies to wireless devices in a
region so that, to avoid interference, devices close to each other have distinct frequencies. Moreover,
it is desirable that the minimum separation of frequencies assigned to neighbouring devices, denoted
s1 below, be as large as possible. Devices that are beyond a certain re-use distance, σ, from each
other could be assigned the same frequency. An optimal assignment uses as few frequencies as
possible.

Figure 1: Tessellation for k = 2 with copies of H2;
a LIS in H2; diamonds and chains of diamonds

Shashanka et al model FAP as a graph
colouring problem (using natural numbers
Nm = {0, 1, . . . ,m}1 for frequencies/colours)
for the infinite graph, A2, corresponding to the
unit equilateral triangular grid, where the ver-
tices (edges) of the triangles are the vertices
(edges) of the graph [SPS03]. They consider
the case where vertices at distance less than σ
have distinct colours. They show that, given
σ = k+1, (i) the infinite grid graph can be tes-
sellated by hexagons of radius k, (ii) a colour-
ing of the graph, Hk = (Vk, Ek), induced by a
hexagon along with wrap-around edges on the
borders (corresponding to edges from the bor-
der of one hexagon to the border of a neigh-
bouring hexagon in the tessellation) needs at
least as many colours as the number of vertices,

|Vk| = 3k2 + 3k + 1, in Hk, i.e., m ≥ |Vk| − 1, (iii) an optimal colouring of Hk is an optimal
colouring for the infinite grid graph, and (iv) there exists an optimal colouring for Hk such that

1Note that the set Nm is cyclic, i.e., difference between 0 and m is 1.

1

s1 = k2. For k = 2, Figure 1 shows the tessellation, and the hexagon labelled A is H2 with one of
the wrap-around edges. Hexagon A also shows a largest independent set (LIS) in this copy of H2.

For a given k, consider an optimal colouring of Hk that achieves s1 = t. Clearly, then, the set
of vertices assigned colours in the set {0, . . . , t− 1} is an independent set in Hk. In the assignment
shown by Shashanka at al, s1 = k2. Consequently, α(Hk) ≥ k2. If α(Hk) ≤ k2, then the assignment
shown by Shashanka et al maximises s1. Hence our interest in finding an upper bound on α(Hk).

2. Our Approach

We label the vertices of Hk such that for any vertex labelled x, the neighbors of x are labelled
(x + i) mod |Vk| where i ∈ Nk and Nk = {1, 3k + 2, 3k + 1, −1, 3k2 + 1, 3k2}. Thus, Hk is a
circulant graph. Henceforth, we will refer to vertices of Hk by their labels.

For a vertices v, u ∈ Vk, u is defined to be a diamond point of v, iff d(v, u) = 2, and in a

shortest path from v to u, v
i1−→ v′

i2−→ u, v′ = (v + i1) mod |Vk|, u = (v′ + i2) mod |Vk|, and
i1 ̸= i2 ∈ Nk. We will denote u by dp(v, i1, i2). The structure formed between v and dp(v, i1, i2) is
called a diamond, denoted by Dk(v, i1, i2). Each diamond has an orientation, and two diamonds,
Dk(u, i1, i2) and Dk(v, j1, j2) are said to be in the same orientation iff in the shortest paths i1 = j1
and i2 = j2, or i1 = j2 and i2 = j1. Hence, a chain of diamonds is defined as the sequence of distinct
vertices v0, . . . , vn iff there exist i1, i2 ∈ Nk such that for all x < n, dp(vx, i1, i2) = vx+1. Note that
all the diamonds in a chain of diamonds, by definition, have the same orientation. The hexagons
labelled B and C in Figure 1 show examples of diamonds and a chain of diamonds, respectively.

It can be easily shown that starting at vertex 0, we can follow the chain of diamonds at sub-
sequent vertices in the same orientation, and this chain visits each vertex in Hk, and after |Vk|
vertices is back at the vertex 0. We will call the chain traversed in the vertical orientation as a
complete chain of diamonds for Hk.

With a careful study of the structure of a largest independent set (LIS) S in Hk, we have shown
the following two results.

Lemma 1. For any LIS S in Hk, for any vertex v in S, there exists another vertex v′ in S that is
a diamond point of v.

Lemma 2. If all the vertices in a chain of diamonds belong to a LIS S in Hk, then the chain has
at most k vertices.

We are currently in the process of proving

Conjecture 1. Any LIS S in Hk can be procedurally transformed to a LIS S′ such that S′ is the
union of mutually disjoint sets Si, and for each i, the vertices of Si form a chain of diamonds in
the vertical orientation.

Sketch of proof (work in progress) Our transformation procedure runs in rounds. In each
round, we traverse the complete chain of diamonds for Hk in sequence, starting at vertex 0, and
for each vertex, ensure that v has a diamond point in the vertical orientation. For any vertex v in
a LIS S, we have tabulated every possible configuration of LIS vertices in the neighbourhood of v,
and shown that, in each case, either v has a diamond point in the vertical orientation, or, when
possible, we can move vertices of S so that the resulting set is a LIS and v has a diamond point in
the vertical orientation. Our movement of vertices is restricted to vertices that appear after v in
the complete chain of diamonds. We are in the process of showing that after a bounded number
of rounds, all the vertices in the resulting LIS will have diamond points in the vertical orientation,
thus proving our conjecture. Sketch

Then, using Lemma 2 and Conjecture 1, we will try to show that

2

Conjecture 2. Suppose S, a LIS in Hk, is the union of mutually disjoint sets Si, and for each i,
the vertices of Si form a chain of diamonds in the vertical orientation, then,

∑
i |Si| ≤ k2.

The proofs of Conjectures 1 and 2 together will prove that α(Hk) ≤ k2.

References

[GR01] Chris Godsil and Gordon Royle. Algebraic Graph Theory. Springer, 2001.

[SPS03] M. V. S. Shashanka, A. Pati, and A. M. Shende. “A characterisation of optimal channel
assignments for wireless networks modelled as cellular and square grids”. In: Proceedings
International Parallel and Distributed Processing Symposium (2003), p. 8. doi: 10.1109/
IPDPS.2003.1213406.

[Sto14] Derrick Stolee. “Finding Cliques and Independent Sets in Circulant Graphs”. In: Com-
putational Combinatorics (2014).

3

Is AI Coming for Our Jobs as TAs and Academic
Advisors?

Emirhan Gencer, and Jack Patterson

Furman University

This project explores the development and challenges of

creating AI chatbots for academic support roles, such as teaching
assistants (TAs) and advisors. We discuss the process of data
collection and scraping, vectorization techniques, and the
utilization of Large Language Models (LLMs) like OpenAI's GPT.
Key challenges addressed include data cleaning and formatting,
cost reduction strategies, maintaining chat history relevance, and
restricting the domain of questions without hindering the chatbot's
functionality. We also delve into the complexities of incorporating
visual explanations and mitigating biases in AI models. Through
our work, we aim to shed light on the potential of AI in
revolutionizing academic support while highlighting the
intricacies and considerations involved in its development.

Participation and Success of Underrepresented
Students in Computer Science

Nishyah Scott and Michael Diaz

Furman University

This work explores factors influencing participation and success

in computer science, focusing on underrepresented students. It
leverages IPEDS, Taulbee Survey, College Scorecard, and Furman
University data to examine enrollment, retention, performance,
and earnings. Key findings emphasize the importance of
representation among faculty and PhD students for encouraging
undergraduate participation from similar backgrounds. Computer
science proves accessible to low-income students, offering a
potential path to upward mobility. However, gaps in high school
GPA and quality persist, impacting performance. The research also
highlights a concerning trend of students, particularly Black and
first-generation students, intending to major in computer science
but not completing the program. This attrition often occurs early
in the academic journey, potentially linked to lower GPAs. The
presentation concludes with a call for qualitative research to
contextualize these quantitative findings and to explore student
and faculty perspectives on factors contributing to the lack of
diversity and inclusion in computer science.

